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1. SUMMARY 
.. _. ...~ ... - .- .. _..___.___ ~. . 

This report describes an investigation that was conducted to select and develop an 
improved analytical method for predicting the stability and cpntrol characteristics of elastic 

- airplanes. 

The investigation included consideration of the free-flight conditions of large airplanes 
in their “clean” configuratim. Landing, takeoff, ground effects, stability augmentation, 
and control surface movements were not considered, nor .were prediction of air- 
plane performance, flutter, or structural loads. Ths study was confined to a fligi: 
envelope extending from low subsonic speeds to Mach 5 and from sea level to 30 000 meters 
(93 360 ft) altitude. Within this envelope, rectilinear and ciwilinear reference flight paths 

. were taken and analyses made of arbitrary, large, and small perturbations of airplane motion 
about the reference flight paths. -h-plane stnictural motions of dynamic-elastic and 
quasi-static-elastic characters were included, and their effects on stability determined. 

The approach taken in the investigation was to develop in order: . 

e equations of motion 
0 stability criteria 
0 stability derivative prediction methods 
0 stability characteristics prediction methods 

-. . . ~ . ~ .  ~ 

‘ - A  major result obtained in the investigation has been the unification and development of 
aerodynamic, structural, and dynamic techndogies into an overall plan for calculating 
elastic airplane stability characteristics. The plan involves a computing program system 

- - arrangement as outlined below. 
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There are two essential featurcs to  this plan: 
1. The system elercents an6 the total system are well suited to computer programming. 
2. Provision is made for introducing empirical datk (experimental measurements, 

handbook results, etc.) i,nto the system. 

Other results and conclusions concerning the arialysis methods and their application to 

1. The lumped parameter concept is the most practical way to  represent an airplane for 
analysis. This involves paneling the airplane so that the aerodynamic and structural 
relationships among panels can be expressed in terms of influence coefficients. A 
geometry definition program is desirable to mechanize and help guide the paneling. 

2. Lifting surface theory gives good resulis and is the most suitable method for 
determining the aerodynamic influence coefficients. 

3. For most airplane configurations, equival :nt beam structural models are adequate 
for determining structural influence coefficients. For very low aspect ratio wings or 
for incfeased accuiacy,. however, influence coefficients from large, sophisticated, 
finite element structural programs should be used. 

4. The stability criteria that apply to rigid airplanes apply directly tc elastic airplanes. 
5 . Stability characteristics can be influenced strongly by inaccuracies in estimating che 

rigid stability derivatives. These effects on design decisions are of the same order of 
importance ar quasi-static-elastic and dynamic-elastic effects. 

6. The effect of airplane loading conditions (mass distribution) on an elastic airplane's 
stability characteristics can be relatively large, sometimes reversing the sign of the 
parameters that represent flexibility effects. 

7. The evaluations of control effectiveness and control surface angles required to trim 
are influenced strongly by flexibility; however, since viscous and nonlincar 
aerodynamic effects are also important in those evaluations, the applicability of 
Lifting surface theory based or), potential flow as a prediction technique is limited. 

8. Airplane stability characteristics are, in general, moderately affected by flexibility. 
The quasi-static-elastic formulation is usually adequate for most prediction tasks, 
dynamic effects being generally modest. However, some dynamic check cast , 
should be run, since there is no assurance that dynamic effects will be small for any 
given configuration. 

large, flexible airplanes of the SST and 707-320B type are listed below. 

It is recommended that further development of prediction methods follow the plan* 
mentioned above. Lifting surface theory and beam analysis should be used to determine 
aerodynamic and structural influence coefficients and to calculate stability derivatives and 
stability characteristics. For dynamic stability investigations, if the center-of-gravity 
disturbance is characterized by the small perturbation equations of motion, the character- 
istic equation rooting technique may be used, The stability of large perturbations is best 
evaluated by time history calculations. 

*Mechanization of this plan is currently under way under the direction of personnel of the 
Non-Steady Phenomena Branch, NASA-Ames. 



2. INTRODUCTION 

The stability of an airplane is its tendency to persist in a particular reference motion 
(for example, steady, level flight) when it has been disturbed from that motion. Piimary 
€actors affecting stability are the changes in the aerodynamic forces and moments acting on 
the airplane that occur with changes in the airplane's motion and orientation. They are 
expressed as :tability derivatives evaluated at the reference motion condition, such as the 
change in airplane lift coefficient with change in angle of attack, a C ~ / a a  lief 5 C L ~ .  

In .the past, the effects of structural flexi 'ity on airplane stability were accounted for 
by modifying the stability derivatives. For example, a change in airplane lift due to a change 
in angle of attack might produce twisting of the wing or bending of the .fuselage, resulting in 
a different lift change for a particulai. angle-of-attack change than would occur had the 
airplane been iigid. The rigid airplane stability derivatives. were then corrected to include 
these quasi-static-elastic effects. 

The effects of structural dynamics have generally been a consideration only in flutter 
predictions. The center of gravity of the airplane was (and is) considered t.? be in a state of 
steady, level flight while the structure is disturbed. For example, neutral flutter stability is a 
constant-amplitude, oscillatory structural motion resulting from a disturbance; however, this 
motion is regarded as having no effect on the steady, level motion of the center of gravity of 
the airplane. This is a satisfactory representation of the motion provided the frequency of 
the structural motion is well separated from the natural frequendes of the overall motion of 
the airplane, e.g., its short period longitudinal natural frequency. In this case the two 
motions are not sufficiently coupled for an exchange of energy between them. 

Certain aerodynamic and structural approximations have also been used. Aerodynamic 
surfaces -wings and tails-may have sufficiently large aspect 'ratios that lifting line theory 
may be used to  predict aerodynamic loads and the structure may be treated essentially as an 
assemblage of beams. These and other approximations were satisfaccory and led to relatively 
simple methods for predicting the influence of structural flexibility on airplane stability. 

However, the advent of large airplanes operating in the transonic and supersonic flight 
regimes nas led to configurations for which some of the acceptable approximations of the 
past are of questionable validity or are obviously invalid. The frequencies of the structural 
motion have been sufficiently reduced by the increase in both airplane flexibility and cruise 
dynamic pressure that coupling with overall motion of the airplane is attendant. The use of 
low aspect ratio aerodynamic surfaces invalidates the lifting line aerodynamic approxima- 
tion and reduces the applicability of equivalent beam structural models. Different methods 
of analysis must be introduced. 

3 



; Bisplinghoff and Ashley (ref. 1, chapter 9) have laid the ground work for new, less 
restrictive ;nethods by presenting equations of motion tbat have the required degree of 
generality. Milne (ref. 2) also presents the development of Gore genua1 equations of motion 
that integrate conventional stability and aeroelastic methods. Milne’s rather extensive work 
also includes the application of the equations to the problem of slender airplane trim state 
and longitudinal stability. Most major airplane companies are also involved in developing 
new, less restrictive methods. However, results of these studies are usually not available in 
the open literature. 

With this background in mind, an investigation was conducted for the purpose of 
developing an improved method for predicting the stability and control characteristics of an 
elastic airplane. Objectives of the study were to: 

1. Develok equations of motion that have sufficient generality to handle large, flexible 

2. List and evallate assumptions and restrictions introduced and determine how they 

3. Develop stability critck applicable to  flexible airplanes. 
4. Develop improved methods for predicting elastic airplane stability derivatives using 

5. Develop an improved approach for predicting elastic airplane stability characteristics 

6.  Document the results of the study in a precise, understandable form. 

airplane stability and control problems, including dynamic-elastic effects. 

may influence the prediction of airplane stability and control characteristics. 

. 
current and/or improved aerodynamic and -structural techniques. - 

using the results of 1 through 4 above. 

.~ ._ ~ . .  ._ ... 

The work was accomplished under the technical direction of the Non-Steady 
Phenomena Branch, Ames Research Center, Moffett Field, California. Members of the 
Aerodynamics and Structures Staff of the Commercial Airplane Division of The Boeing 
Company at Renton, Washington conducted the investigation as a joint effort. Frequent 
coordination meetings and reviews with Ames representatives were held during the cmrse of 
the contract. 

The scope of the investigation included consideration of large, flexible L: ” S  

operatjng in the flight envelope of fig. 1 ,  Only “c!ean” configurations were studied; lancllng, 
takeoff, ground effects, stability augmentation, and control surface movements were not 
considered. Rectilinear and curvilinear reference flight paths were assumed, and arbitrary, 
large, and smali airplane motion perturbations about the reference flight paths investigated. 
Structural motions of dynamic-elastic, quasi-static-elastic, and rigid nature were included in 
the study. 

Ordy stability and control characteristics were included in the investigation; nc;l 

consideration was given to the prediction of airplane pcrformance, flutter, or structural 
loads. Both stntic and dynamic stability characteristics wcre studied. Stability ciiteria were 
also examined, but no hsndling-qualities work was included. 

4 



t Region of applicability / of nie thods 

'lF Croa hatching indicates 
regions where calculations 
and comparisons were 
made to validate methods 

I L . A - - . J  
1 2 3 4 5 

Mach number 

FIGURE 1. - FLIGHT ENVELOPE FOR IN VESTIGA TION 
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The investigation was fur er restricted to the consideration and development of 
malytical methods; experimental methods were of intere$ only to the extent that they 
served as a standard for comparing snd evaluating the analyticai approaches. Although the 
number of theoretical methods considered was large for the initial part of the investigation, 
it was rapidly narrowed for the major task of comparing and evaluating the several most 
promising approaches. 

b 

The approach taken in the investigation was to develop in order: 
0 equations of motion 
e stability criteria 
e stability derivative prediction methods 
0 stability characteristics prediction methods 

Thee mathematical models of an elastic airplane were considered; rigid (generally 
frozen in the reference shape), equivalent elastic*, and dynamic elastic. 

. -  
The risid model zdmits no structural deflections from the shape in the reference 

motion. it serves as a base and provides a means for evaluating theoretical methods by 
comparing predictions with data obtained from essentially rigid wind tunnel models. The 
rigid model was sufficiently accrlrate to describe most aircraft prior to the introduction of 
large (weights of over 100 000 lb (45 359 kg)), swept-wing jet aircraft flying at dynamic 
pressares above 400 psf (1 9 152 N/m2). 

The equivalent elastic model assumes that all structural deflections are of a 
quasi-staticelastic nature. Air and inertia loads are considered to  be in phase with the 
deflections. No structural dynamic effects are included. This model has also been referred to 
as static-elastic or quasi-staticelastic in the literature. For this model, flight test and 
flexible-model wind tunnel data are used as the basis for validation. The equivalent elastic 
formulation is satisfactory wherever there is a reasonable frequency spread between 
structural and control modes. 

The dynamicelastic model is the most complex of the three. I t  takes into account 
dynamic motions of the structure as well as in-phase deflections. Usually this case is handled 
by considering 10 to 80 structural vibration modes. A variation of this approach that lends 
itself to computer calculation is the residual-flexibility formulation, which considers the 
correct phasing of the lower frequency vibrational modes but assumes that higher frequency 
modes are in phase with the loads. This approximation gives to the residual-flexibility 
method advantages for compi*+nr mechanization that may result in more accurate answers 
than would be obtained v.ilh the straightforward inclusion of modes with their 

*The terms quasi-static-elastic, .,i,ttk-, 
in this report. 

I :: % equivalent elastic are used interchangeably 
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mathematically correct phasing. The dynamic-elastic formulation is usually required for 
cases where the structural frequencies are near maneuver and control frequencies 
(approximately within a 2: 1 ratio). 

The equations of motion were developed first for the rigid airplane, treating first the 
general equations of motion, then airplane motion perturbations about the reference flight 
path, Next, the flexible airplane equations of .motion wcre developed, using the lumped 
parameter concept in describing structural flexibility and structural equilibrium. Perturba- 
tion motions were united with the structural motions for both equivalent elastic and 
dynamic-elastic cases. Both residual-flexibility 3nd completely elastic approaches were taken 
in developing the equations to  describe the dynamic-elastic airplane case. Assumptions and 
restrictions introduced into the developments were carefully evaluated as to their effects on 
stability and control applications of the equations. 

The approach taken in establishing stability criteria was essentially one of examining 
rigid airplane criteria to determine whether they do or do not apply to flexible airplanes. 
This part of the study was divided into consideration of static and dynamic stability cases. 
The usual mathematical approaches of characteristic equation rooting and time history 
traces t o  assess dynamic stability were taken. Some consideration was given to energy decay 
methods for possible future application. 

Stability derivative prediction methods for rigid airplanes can involve the use of a 
variety of aerodynamic theories and methods. The approach taken here was to compare and 
evaluate against experimental data those methods based on lifting line theory; lifting surface 
theory; and handbook compilations of theoretical, empirical, and test data. For the elastic 
airplane, the structural methods considered were finite element theory and equivalent beam 
analysis. Structural methods were compared for the purpose of finding the one most 
suitable for preliminary design application. 

Methods for the more extensive task of predicting the stability characteristics require a 
unification of the previously mentioned areas. Static stability characteristics were 
determined by using the stability derivatives. The dynamic stability calculation methods 
investigated consisted of approximate empirical handbook formulas, roots of the small 
perturbation characteristic equations, and time histories from solution of the large 
perturbation equations of motion. 

The approach taken for this part of the study was to investigate the regions of 
applicability of the available methods and to assess the relative importance of staticelastic 
and dynamic-elastic effects on airplane stability. Areas in the flight envelope of fig. 1 where 
sgecific calculations and comparisons were made to validate the methods are shown by cross 
hatching. Application of the methods to other areas within the envelope was justified by an 
evaluation of the assumptions and restrictions incorporated into the governing equations. 



The report consists of four separately bound volumes: a summary report and three 
. appendixes. These also serve as a handbook which describes and discusses the pertinent 
aeroelastic methods. 

The summary report presents the results and conclusions of the study with discussions 
as required for the reader to gain an understanding of the subject. It should be useful for 
managers, those new to the field or experienced only in related fields, and any others 
desiring an overview of the subject. 

The appendixes contain those results of interest primarily to  the specidist, including 
the detailed steps and discussion of the various derivations and developments as well as the 

.variations in approaches and applications of the methods. Appendix A treats the 
deirelopment of the equations of motion and stability criteria. Appendix B develops and 
evaluates methods for determining longitudinal and lateral-directional stability derivhtives. 
Appendix C, using the results of the previous work, discusses and evaluates the pertinent 
factors important to the prediction of airplane stability arid response characteristics. 

Matrix notation and methods have been used in developing and presenting many of the 
equations in the summary report and succeeding parts of the study. The reader not familiar 
with the notation is advised to  spend the short time necessary to learn the basic ideas and 
symbols of matrix methods. For the specialist, a thorough understanding is essential. 
Reference 3, or one of the many other available books on matrix methods, is recommended. 

It is also assumed that the reader has some background in the field of stability and 
control. If this is not the case, or if review is desired, Etkin's book (ref. 4) is suggested for 
study. 
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3. SYMBOLS 

This list includes the symbols found in the Summary and appendixes. In different 
technologies some of the symbols have different meanings. For example, E means downwash 
angle to an aerodynamicisk, but strain to a structural engineer. In these cases the several 
dei .litions have be.:n lisLed after the symbol. 

a 

b 

Aspect ratio nondimensionai 

Steady aerodynamic influence coefficients matrix, meters /radian 

Unsteady aerodynamic influence coefficienis matrix, ineter -seconds/ 
radian 

Aerodynamic matrices, newtons, newton-meters 

2 

2 

1 Root of characteristic equation, second-f ; lift curve slope, radian- 

Speed of sound, meteTs/secoiid 

Vertical tail elastic to  rigid lift ratio, nondimensional 

Acceleration. me ters/second 2 

Wingspan, meters 

Cycles to damp to  half amplitude, nondiniensionai 

Cycles to double amplitude, nondimensional 

Drag coefficient, D /<S, nondimensional 

induced drag coefficient, Di /$, nondimensional 

Lift coefficient, L Ins,  nondimensional 

Rolling moment cpefficient, M, / $b, nondimensional 

9 



tc 1 

ICRI 

C 

CR 
- 
C 

%ef 

D 

d 

d 

Pitching nionient coefficient, M /!Si?, nondimensional 

Nortliill pressure force coefficient, N / $5, nondimensional 

Y 

Yawing moment coefficient, M, / G S ~ ,  notidimensional 

Pressure coefficient, (P - P')/tj-, nondimensional 

Thrust codficient , T / GS, nondimensional 

Side force coefficient, Fy . /is, nondimensional 

Fiexibility niiltrix with reference point fixed, meters/newton 

Fiexibili ty niatrix with reference point fixed and with reference 
point rows and columns removed, meters/newton 

Flexibiiity matrix with reference point free, meters/newton 

Residual flexibility matrix, meters/newton 

Wing chord. meters 

Root chord, meters 

Mean aerodynamic chord, meters 

E for the 707 and cR for the SST, meters 

Drag, newtons 

induced drag. newtons 

Transformation matrix from fluid to stability axis system, 
nondimensionai 

Elastic displacement, meters 

Column matrix of elastic displacement components at the ith 
element, meters 

Matrix of elastic displacement perturbation, meters 

Total airplane perturbation energy, newton-meters; Young's modulus, 
newtons/meter2; induced drag efficiency factor, nondimensional; 
energy, newton-meters 

10 



C 

GW 

G 
- 

Internal energy density, newton-meters 4 /kilogram 

Energy decay parameter, nondimensional 

Force, newtons; surface stress vector, newtons/meter 2 

Total force matrix, newtons 

Aerodynamic force matrix, newtons 

Flexibility matrix relating changes in panel centroid deflections to 
unit loads, me terslnew ton 

Generalized forces at ith element, arbitrary dimensions 

Thrust force matrix, newtons 

Flexibility matrix relating panel slopes to unit loads, radians/newton 

Aerodynamic influence coefficients (subsonic), newtonslradian 

Perturbation force, newtons; perturbation surface stress vector, 
new tons/meter 2 

Perturbation force matrix, newtons 

Aerodynamic perturbation force matrix, newtons 

Thrust perturbation force matrix, newtons 

Shear modulus, newtonslmeter 2 

Gross weight, newtons 
t 

Structural influence functions in diadic form with reference point 
free, meters3lnew ton 

,Aerodynamic influence coefficients (supersonic), newtons/radian 

Acceleration due to gravity, meterslsecond 2 

Unit base vector, nondimensional 

Altitude, meters; specific enthalpy, newton-meters/kilogram; center- 
of-gravity position, nondimensional 

11 



"m Maneuver point position, nondimensional 

4, Neutral point position, nondimensional 

Static margin, nondimensionai 

Velocity of panel normal to  the streamwise direction, meters/second 

Moments and products of inertia, kilogram-meters 2 

Identity matrix, nondimensional 

iH Horizontal tail deflection, degrees 

Unit base vectors, nondimensional 

Torsional constant, meters 4 /radian J 

K Angular deflection at the exposed horizontal tail due to a unit load 
at the tail, radians/newton 

Structural stiffness coefficient, newtons/meter 

Ratio of aircraft nose lift to  aircraft wing lift, nondimensionai 

Effective change in vertical tail angle of sideslip due lo a unit change 
in rolling acceleration measured at the exposed vertical tail, degrees/ 
radian/second 2 

Effective change in vertical tail angle of sideslip due to a unit change 
in yawing acceleration measured at the exposed vertical tail, degrees/ 
radian/second2 

K y  Effective change in vertical tail angle of sideslip due to a unit change 
in side acceleration measured at the exposed vertical tail, degrees/ 
meter/second 2 

Effect of lift carryover on the body due to the wing, nondimensional 

Effect of lift carryover on the wing due to the body, nondimensional 

StifKneFs matrix with respect to fixed reference point, newtonslmeter 
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Element stiffness matrix, newtonslmeter 

k 

1 

N 

n 

Stiffness matrix with respect to free reference point, newtons/meter 

Generalized stiffness matrix with free reference point, newtons/ 
meter 

Thermal conductivity, newton-meterslsecond-meter-degrees Celsius; 
elastic constant, newtons/metet-; Strouhal number, nondimensional 3 

Corrector matrix for influence coefficients, nondimensional 

Lift, newtons 

Moment arm, meters; characteristic length, meters; pressure difference 
across surface, newtons/meter 2 

Wing cref/4 to horizontal tail crcf/4, meters 

Wing cref/4 to vertical tail cref/4, meters 

Direction cosines, nondimensional 

Mach number, nondimensional; mass of the airplane, kilograms 

Moment, meter-newtons 

2 Inertial matrix, kilograms, kilogram-meters 

Generalized mass matrix, kilograms 

Direction cosines, nondimensional 

Perturbation moment, meter-newtons 

Mass matrix, kilograms 

Diagonal mass matrix, kilograms 

Yawing moment, meter-newtons 

Normal force, newtons 

Load factor, nondimensional; number of elastically connected mass 
elements used to represent the airplane, nondimensional 

I .  I .  I ,  , . ,  , 
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D 

Qi 

{ Q >  

¶ 

qi 

Direction cosines of the normal surface, nondimensional 

Unit vector norma! to the surface, nondimensional 

Diagonal matrix of panel unit normal vectors, nondimensional 

Period, seconds 

Coinponents of the angular velocity Gin the body axis system, radians/ 
second 

Total pressure, newtons/meter 2 

Aerodynamic panel pressure forces, newtons 

Static pressure, newtonslmeter'; roll rate, radians/second 

0 

Perturbation components of angular velocity zp in the body axis 
system , radians/second 

Generalized force, arbitrary dimensions " 
Matrix of generalized aerodynamic and thrust forces, arbitrary 
dimensions* 

Pitch rate, radians/second; rate of internal heat energy addition, newton- 
me ters/second 

Generalized coordinates, arbitrary dimensions * 
Dynamic pressure, newtons/meter 2 

Pitch rate, qcr,f/2V ,nandimensional 

Matrix of generalized coordinates, arbitrary dimensions" 

c1 

Matrix of generalized coordinates of elastic free vibration, arbitrary 
dimensions" 

Can tilever eignvectors, nondimensional 

*The uniEs of a generalized fprce times the generalized coordinates must be newtsn-rnetero. 

14 



R 

Re 

* 
K 

r 

A r 

P r 

L 

rS 

d 

r' 

I r&p 1 

S 

€4 
S 

T 

TI/, 

T2 

Universal gas conatant, newton-meters/kilogramdegrees Kelvin; 
niagnitude of position vector, meters; region of XY plane not covered 
by the airplane or wake, nondimensional 

Reynolds number, ,iondimensional 

Position vector at an initial instant of time, meters; body force per 
unit vohrme, newtonslmeter 3 

Referencc distance, meters; magnitude of the position vector, meters 

Yaw rate component, rb/2V nondimensional 

Position vector relative to  the body axis system, meters; position 
vector relative to the fluid axis system, meters 

c1 

Position vector of the center of gravity relative to the fluid axis 
system, meters 

Position vector relative to the stability axis system, meters 

Position vector relative to inertia! space, meters 

Position vector of the center of gravity relative to the inertial space, 
meters 

Position vector in the undeformed airplane relative to  the body axis 
system, meters 

Matrix of airplane position and orientation perturbations, meters, 
radians 

2 Reference area, meters ; airplane's projection on ths XY plane, 
nondimensional 

Diagonal matrix of panel areas, meters2 

Complex frequency function, 1 /seconds 

Kinetic energy, newton-meters; thrust, newtons; time, seconds 

Time io damp to % amplitude, seconds 

Time to  double the amplitude, seconds 
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P 
V C  

w 

Rolling convergerice mode root, 1 /seconds 

Spiral mode root, l/seconds 

Time, seconds; airfoil thickness, meters 

Nondimensionalizing time factor, seconds 

Potential energy, newton-meters ' 

Components of velocity isc in the body axis system, meters/second 

Perturbation components of the velocity in the body axis system, 
meters/second 

, 

Generalized coordinates, nondiir ensional 
I 

Forward velocity component, u/Vc nondimensional 

Generalized e;?stic displacements, meters 

1' 

Lyapunov function, nondimensional; volume, meters 3 

Equivalent airspeed, meters/second 

Veiocity vector of the airplane center of gravity, meters/second 

Velocity vector, meterslsecond 

Perturbation velocity vector of the airplane ce2tc-r of gravity 
me ters/second 

e 

' Matrix of airplane liuear and rotational rate perturbations, meters/ 
second, radianslsecond 

Matrix of airplane linear and rotational acceleration perturbations, 
meterslsecond 2 , radians/second 2 

Weight, newtons; airplane's wake projection on the YY plane, 
nondimensional 

Matrix of panel centroid distances to  the reference point, meters 

Body-fixed-axis system (app. A); fluid axis system (app. B) 

I , ,  

, , I ,  ' ' /  

I I I  , , L , I t - , ,  , I .  I I '  I I I  , , , I .  

1 , :  I I . ( 4 ,  



xo, yo, z, 

x: Y ’, z‘; 
x’, y’, z F  

Y 

rAYJ 

I J  

( I l l  

Greek Symbols 

a 

Body-fixed-axis system 

Axis system fixed to a material point 

Earth-fixedaxis system 

Side force, newtons 

Matrix of spanwise panel widths, meters 

Vertical displacement of structural reference point, meters 

Matrix of vertical displacements of each panel from equilif-r;iin, 
meters 

Square matrix 

Column matrix 

Row matrix 

Diagonal matrix 

Transposed matrix 

Matrix inverse 

Determinant of a matrix 

All zero elements 

Column matrix of ones 

“Jump” in enclosed quantity 

Angle of attack, radians 

Angular rotation of structural reference point, radians 

Angle between X body axis and tC , radians 

Matrix of panel slopes, radians 

1 
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4 Angle of sideslip, radians 

r 

Y 

A 

d 

1; 

p: 

Q 

e 

(M2 - I ) ,  nondimensional 

Circulation, meters 2 /second 

Structural influence functions with reference point fixed in dia4ic 
forni, meters 3 /newton 

Flight path angle, radians: ratio of specific heats for air, 
nondimensiona! 

FiiiiLc change in sc7me parameter, nondimensional 

Control surface defiection, radians; arbitrarily small number, non- 
dimensional; Dirac’s function, nondimensional; thickness ratio, 
nondimensionai 

Matiix of displacements relative to a space-fixed inertial system, 
nieiers 

Matrix of flexibie displacements relative to the structural axis system, 
meters 

Downwash angle, radians; arbitrarily small number, nondirnensional; 
strain, meterslmeter 

Change in downwash angle at the stabilizer per unit change in wing 
angle of attack, &//aa, radianslradian 

Damping ratio, nondimensional; nondimensio,ialized coordinate, 
nondimensional; dummy variable, nondimensional 

Efficiency factor, nondimensional; coordinate, nondimensional; 
duniniy variable, nondimensional 

Euler angle, radians 

Perturbed Euler angle, radians 

Streamwise rotation of pailel, radians 

Node rotations, radians 

, I .  

, * ,  , 

Rate of,ch:nge of Euler angle, radians,kecond 
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n 

R a 

*T 

7 

cb 

I+nl 

Rotational rate of psneied airplane about axis of rotation, radians/ 
second 

Rigid-body rotation about center of gravity, radians 

Angle mode matrix, radians/meter 

Eigenvalue. notidi~iiensiotiai; taper ratio, nondimensional; bulk 

angle, degrees 

modulus. newtons/meter*; Lame’s constant, newtonslmeter 2 ; sweep 

Roots of characteristic equation, 1 /seconds 

Reduced Inass parameter, nondimensional; Lame’s constant, newtons/ 
meter ; extent of influence region, nondiniensional 2 

Cantilever mode shape matrix, nondirnensional 

Matrix of all cantilever modes, nondimensional 

Poisson’s ratio, nondimensional 

Coordinates, nondimensional; dummy variables, nondimensional 

Constant, 3.14159. . ., nondimensional 

Density, kilograrns/meter 3 

Normal stress, newtons/n~eterZ; density ratio, nondimensional; real 
root of characteristic equation, I /seconds 

Rotation of structural reference axis system, radians 

Rectilinear translation of structural reference axis system, meters 

CQefficient of viscosity, kilograms/meter-second; shear stress, 
iiewtons/meter2; time, nondimensional 

Total.velocity potential, meters 2 /second; Euler angle, radians 

Normalized natural free vibration modes of the airplane, nondimensional 
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9 

6 

dJ 

w 

0, 

d 

Subscripts 

A 

a 

ac 

8, 

Perturbation veloci,ty potential, meters; pertutbee Euler angle radians 

Kate of ‘change of Euter angle, radians/second 
I 

Free-vibration mode shape matrix, nondimensional 

Rigid-body mode shape matrix, nondimensional 

2 Stress diadic, newtons/nie ter 

Normal mode of generalized coordinate, nondimensional 

Velocity potential, nondimensional 

Arbitrary positive function of time, arbitrary dimension 

Euler angle, radians 

Perturbed h l e r  angle, radians 

Rate OF change of Euler angle, radianslsecond 

Inertia diadic 

Phase angle, radians 

Frequency, radianslsecond; imaginary part of a pair of complex roots, 
1 /seconds 

Undamped natural frequency, radians/second 

Perturbed angular velocity, radianslsecond 

Aerodynamic; airplane; aileron 

Aerodynamic 

Aerodynamic center 

Body reference axis system 
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cf3 

CP 

D 

E 

E 

Eff 

- 

h El 

exp 

F 

HB 

h, lit 

I 

1 

L.E., LE 

IS 

P 

R 

r 

s 

SP 

S 

Ceiter of gravity 

Center of pressure 

Dutch roll mode 

Equivalent elastic (Formulation 11); elevator 

Equivalent elastic (Formulation I) 

Effective 

Equivalent elastic 

Experimental 

Flutter 

Hand book methods 

Horizontal tail 

Inertia relief 

Lower surface 

LeaJing cdge 

Lifting surface theory method 

Pliugoid mode 

Rigid; rudder 

Rolling convergence root mode 

Spiral root 

Short period 

Stability axis system; spiral mode 
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SI 

t 

11 

v. vert, V.T. 

W 

WB 

WBI  

WT 

Sea level 

Tip; total 

Upper surface 

Vertical tail 

Wing 

Wing-body 

Wing-bod y-tcil 

Wind tunnel 

At a = 6~ = ill = Oo; initial state 

Steady state motion variables; trimmed condition 

Undisturbed condition 
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4. ASSUMPTIONS 

Assutnptions used in developing the equations and methods are iisted here for 
reference. Where appropriate in the sutnniary report, pertinent assumptions used in 
obtaining a result or equation are given. However, discussions of the assumptions as they 
come into the developments are given in the appendixes. Further descriptions and 
justifications are included in those discussicns. 
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General Assumptions 

Airplane mass and inass distribution are constant with time 

No tlierinoelastic effects considered 

No electromagnetic effects considered 

Symmetric airplane 

Variation of air density with altitude is negligible 

N o  gust effects considxed 

Gravitatimal forces on the field are negligible 

Small perturbation theory 

Large perturbation theory (3 
Origin of coordinate system is at the center of mass 

Arbitrary perturbations 

9 

I 

Aerodynamic Assumptions 
8 

Potential flow theory @ 
Thin body 

Slender body 

High aspect ratio 

Prandtl boundary layer approximation 

Perfect gas, thermally nonconducting and chemically nonreacting @ 
Isentropic'flow 

Steady flow @ 
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Unsteady flow w 
Inviscid flow 

n 
Quasi-steady flow 

@ Aerodynamic influence coefficients for nonzero sideslip 

Continuum flow w 
@ N o  finite shock waves 

@ Velocity field is irrotational 

Structural Assumptions 

Hooke’s law applies 

Only small strain and displacement gradients are considered 

Structural damping is negligible 

Structura; perturbations can be represented by normal modes 

@om$::tely elastic math model of elastic airplane 

Residual elastic math model of elastic airplane 

Equivalent elastic math model of elastic airplane 

Rigid math model of elastic airplane 

Airplane displacement vector field is such that the center of gravity 
does not displace or rotate 

X component of elastic deflection is negligible 

Y component of elastic deflection i, .iegligible 

The structure can be adequately represented with beams 

Inertia of each finite mass element about its center of gravity is 
negligible I I 

I I C  l I ! , I I ,  

1 1 1 1 1 , .  1 1  : 
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Dynamic Assumptions 

Free flight only 

No spinning rotors 

Steady-state curvilinear flight 

Steady-state rotation is small 

Zero-lag thrust derivatives 

CL- is negligible 
8 

C y i , ,  Cyi,, C 1 **  , and C ** are negligible 
*I nyI  

C is negligible 
\ tDq 

Steady-state rectilinear motion 

Stick-fixed-and-unaugmented airplane 

Thrust perturbation forces are negligible 

Steady state, wings level, and zero sideslip 

Level flight'(steady state) 

Linear aerodynamic stability derivatives 

I 

i Two-degree-of-freedom longitudinal motion 
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5. EQUATiONS OF MOTION 
b 

The equations of motion for rigid airplanes and flexible airplanes are presented in this 
section in the forms deemed most suitable for assessing airplane stability characteristics. The 
stability of an airplane is its tendency to persist in a steady reference motion when it has 
been disturbed from that reference motion. The steady reference motion must be defined 
and the perturbation motion analyzed. Thus, four sets of equations of motion are presented. 
Two govern the reference and perturbation motions for rigid airplanes and two govern the 
reference and perturbation motions for flexible airplanes. 

The perturbation equations of motion are presented for three different order-of- 
magnitude approximations of the size of the perturbation motion variables. These are 
termed arbitrary, large, and small perturbation equations of motion. The small perturbation 
equations are those which have had greatest application.'in the analysis of the stability of a 
steady reference motion. Arbitrary and large perturbation equations may be used in 
investigations involving large disturbances that upset the airplane and in the study of 
maneuvering flight. However, since neither upset nor maneuvering flight are within the 
scope of this study, the small perturbation equations of motion are given primary emphasis. 

The equations of motion presented for rigid airplanes are those which are familiar to 
engineers working airplane stability and control problems. They are essentially those 
developed by Etkin (ref. 4); however, here they are expressed in a body-fixed-axis system 
that is convenient for the application of aerodynamic influence coefficient methods. This is 
in contrast with the usual formulatxn in the stability axis system (ref. 4). In addition, the 
formulation provides for very general steady-reference motions including curvilinear flight. 

There is considerable diversity in the manner in which the gquations of motion for 
flexible airplanes have been formulated. 'Modifications have bien made in the past to 
accommodate new methods for predicting the aerodynamic forces on the airplane. This is 
apparent from a review of works on this subject such as those by Bisplinghoff and Ashley 
(ref. l) ,  and Milne (ref. 2). 

The formulation used here is called a lumped parameter formulation. It facilitates the 
use of aerodynamic influence coefficients that relate a change in aerodynamic force on a 
small region of the airplane's surface, a panel, to an average change in flow incidence at 
another panel. This aerodynamic representation is particularly well suited for making 
empirical corrections to account for separated flow, viscous phenomena, and other 
aerodynamic phenomena that are not readily predicted theoretically but are of considerable 
concern to the stnbility and control engineer. 



The basis for the lumped parameter formulation is described briefly in this section and 
in more detail in app. A. A complete description may be found in Bisplinghoff and Ashley 
(ref. 1). It usually is used in flutter analysis, although it h q  also been used to predict the 
longitudinal stability of flexible airplanes. It is the basis for the prediction of the 
longitudinal stability characteristics of the SST configuration appearing in this volume and 
in app. C. The formulatiotl appearing in this section and in app. A is more general. This 
extended generality is included in the expectation tnat an aerodynamic influence coefficient 
method for whg-body combinations in nonsymmetrical motion can be developed. It also 
incorporates the useful approximation called residual flexibility, which is introduced by 
Schwendler and MacNeal (ref. 5). 

The Presentation appears in the form of a derivation. This form of presentation is used 
merely to introduce the principles on which the equations are based and to delineate the 
most important approxin: .: tions which are included in their formulation. The derivation is 
not complete, although it may appear extensive in the flexible airplane case because of its 
inherent complexity. A detailed derivation appears in app. A; related derivations concerning 
aerodynamic and structural theories are provided in app. B. 

Figure 2 summarizes the various forms for the equations of motion appearing in this 
section and gives a brief description of the approximations that characterize them. 

5.1 Equations of Motion For i! Rigid Airplane 

5.1.1 General equations of motion.- The equations that govern the motion for a rigid 
airplane fallow directly from fundamental principle.< of mechanics. These are the laws of 
conservation of momentum, which state that the rat? of change of linear momentum is 
equal to the total force applied to the airplane and that the rate of change of angular 
momentum about the center of gravity is equal to  the total applied force couple (or 
moment) about the center of gravity. They are stated analytically as 

-- 
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Formulation 

General equations 
of motion 

Eqdations 5 and 6 

klrouifrcation 

Arbitrary perturbation 
equations of motion 

. 
equations of motion 

Equation 16 

I All perturbation 
variables are small 

--I I 
Small perturbaticn 

equations of motion 

Equations 17 and 18 

Character . 
Nonlinear; dynamically coupleu 
longitudinal and 1ateral.directional 
motions; no simplifying approxima- 
tions 

Nonlinear; dynamically coupled 
longitudinal and lateral-directional 
motions; no simplifying approxi- 
mations; no restrictions on mag- 
nitudes of perturbdiion variables; 
stability analysis by time histories 

Nonlinear; dynamically coupled 
longitudinal and lateral-directional 
motions; no restrictions on mag- 
nitude of perturbation variables, 
except that orientation angle per- 
turbations admit sin a! = CY, 
cos CY= 1, sin &e, and cask 
1, etc; equatbns of motion for 
reierence motion are separable; 
stability analysis by time histories 

Linear; dynamically uncoupled; 
equations of motion for reference 
motion are separable; stzbility 
analysis by characteristic roob 

FIGURE 2. - MODIFIED FOF3lS OF EQUATIO'VS OF MOTION 



total airplane mass 
velocity of the airplane c.g. relative to earth-fixed-axis system (x' ,y' ,z' ), fig. 3 
gravity force per unit mass 
surface force per unit are; 
airplane's total surface 
inertia tensor expressed as a diadic 

b 

- - - - 4 - -  - -  & 

= i Ixi + j Iyj + k I,k - i Ix,k - k Izxi . - 
w = rate of rotation of airplane relative to  e-rth-fixed-axis system 
r = position of an arbitrary Q point relative to airplane c g ,  fig. 3 @ -  

P = Center of mass 
ro, = Position of center of mass -, 

I;1GURE 3.- AXIS SYSTEM FOR THE UNDEFORMED SHAPE OF AN ELASTIC AIRPLANE 

The time rate of change d/dt is that apparent to  an observer in the earth-fixed-axis system 
x',y',z', which is assumed to be an inertial reference frame. Thus, letting a/at iepresent the 
time rate of change apparent to an observer in a body-fixed-axis system x,y,z and letting a 
dot ( 0 )  represent the partial derivativer?/at, the equation of motion may be expanded as 
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where 

- - L -  

M ( Q c + w x V  C ) =!L!tg+FA + FT 

A 

;c 
and 

-. M A + G T = l F x F d S  - 

and where FA and GA are the total force and moment due to aerodynamics and FT and $T 
are the total force and moment due to the thrust of the propulsion units. 

Equations (3) and (4) represent the general equations of motion for a rigid airplane. 
Tie x,z plane of the body axis system has been made to coincide with the plane of 
.symmetry of the airplane so that the inertia diadic contains only the I,, product of inertia. 
Certain assumptions have been used in writing these equations. They are: 

Free flight only @ 
0 
@ 
@ 
0 

Ori,Oin of coordinate system at the center of gravity 
Airplane mass and mass distribution constant with time 
No consideration of electromagnetic effects 
No spinning rotors 
Symmetric airplane - 

Equations (3) and (4) may be expanded as six scalar equations, but before they may be G 4  
so expanded the gravitation force vector must be written in terms of the body axis system. 
A convenient form is obtained in terms of Euler orientation angles. These angles orient the 
airplane h space relative to  the earth-fixed-axis system, as shown by fig. 4. Let z'in the 
earth-fixed system be directed positively down toward the earth's center, and let x' have 
some specified direction. Let axis system x i  ,y1 ,z1 be initially codirectional with the x',y',z' 
system but with origin at the airplane's c.g. Introduce the rotation J;  about the z1 axis, 
which rotates a system x2,y2,22 such that x2 is in the plane of airplane symmetry. Then 
rotate a x3,y3,q system about y2 through the angle 8 so that x3 coincides with x. Finally, 
rotate about x3 through the angle 0 so that y3 coincides with y. This completely orients 
the airplane relative to  the earth-fixed-axis system. One may choose alternate definitions of 
the Euler angles; the definition presented here is the one used by Etkin (ref. 4, p. 100). 
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x'Y'Z' Parallel to eart.!'s axis 
XYZ Earth-fixed axis 
Note: Rotation sequence is: 

FIGURE 4.- EULER ANGLES 

-~ .. . 

The gravity force vector is in the direction of z', Le.,$= &. The transformation of 3 
to body-fixed axis is given by 

g~ = - g gin oT+ g cos e sinqT+ g cos e cos cp-if 

Now, the general equations of motion may be written as six scalar equations in terms of the 
body axis system as 

MU + M (QW - RV) = - Mg s in  e + F 
+ FT *x X 

M+ + M (RU + PW) = brg cos e sin 9 + F~ + F~ 

(5a) 

(5b) 
Y Y 

(5c) 
z + FT M W +  M (PV+ QU) =Mg COS 8 COS 9 + FA 

2 

X + MT YY X 
Ixx P - Ixz (R + QP) + (Izz - I ) QR = MA 
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+ 

+ 

QR = 

PR = 

MA. 

MA 

Y 

z 

1 
+ 

+ MT 
’ y1 kT 

z 

These are six equations in the eight unknown quantities, lJ, V, W, P, Q, K, 8 , and 8 . The 
aerodynamic and thrust forces and moments in the right-hand members are functions of 
these eight quantities ur their derivatives with respect to  time and, possibly, control 
variables. The control variables are regarded as known functions of time. 

A corriplete .st of equations is obtained by introducing the following two kinematic 
relations obtained from the Euler angle definitions: 

(6b) 6 = P + Q sin 8 tan 8 + R cos 8 tan 8 

The heading angle for the airplane may be obtained from the additional kinematic relation 

4 = (Q sin 8 + R cos Q) sec e (7) 

Equations (5) and (6) are eight equations in eight unknowns. They may be integrated if th:: 
aerodynamic and thrust terms are specified functions of the lotion variables, but they are a 
nonlinear system of ordinary differential equations. If initial data, consisting of U, V, W, P, 
Q, R, 0 , and Q specified at an initial instant of time to are given, then in general it is 
possible to integrate equations ( 5 )  and (6). This results in a determination of the variables at 
times later than to. Because of tile nonlinearity of these equations, however, integration is 
possible only by mechanical quadratures, except for exceptional cases consisting of steady 
motion of the airplane. 

Fortunately, the cases of steady motion that satisfy equations (5) and (6) represent 
solutions t h d  are of prime interest. They are the subject of the following paragraph. The 
stability of an airplxie in these steady motions, Le., the tendency for the airplane to persist 
in the steady motion when disturbed from it, is evaluated using perturbation forms of the 
general equations of motion, equations (5) and (6). These perturbation forms are disciisscd 
in pars. 5.1.3 and 5.1.4. Paragraph 5.1.4 also introduces expressions that describe thc 
dependence of the aerodynamics on the motion variables. 



5.1.2 Steady reference motion.- In a steady reference motion all of the derivatives 

with respect to  time in equations (5) vanish. The equations of motion must be satisfied 
t h e  airplane to be in eqi:ilibrium. Therefore, the steady velpcities (denoted with a subscript 
oneasUl,Vl,W1,P!,Q1, R1)must satisfy 

b 

and the kinematic relations 

= Mg cos d1 sin q~ 1 + FA +FT (8b) 
y1 y1 

= M ~ C O S  e COS 9 +F +FT (8c) 

AZ 1 
1 

+ MT = MA 

Y1 Y1 

+ MT 
* Z  1 z 

= M  
1 

Rates of change of the Euler angles 6 1  and 6 1 have been admitted, but it must be 
recognized that this leads to time rates of change in the components of gravity force in the 
right-hand members of equations (8a), (Sb), and (8c). The left-hand members of thcsc 
equations are invariant in time. Thus, in the case of motion in which 8 1 and 91 arc 
nonzero, to maintain steady motion the aerodynamic forces and moments, or those due to 
thrust, must be controlled in such a manner as t o  balance the gravity force changes. In all 
cases for which e 1 and 6 1 are zero the aerodynamic and thrust terms are constant during 
the steady motion. 
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Four of the most important steady reference flight conditions for assessing the stability 
and control characteristics of large airplanes are level flight, climbing flight, turning flight, 
and pullup. The steady velocity components and Euler angles and the equations of motion 
for those four cases are as follows: 
a. Steady, level, rectilinear flight: 

VI = P1 = Q, = R1 = g1 = 0 8 = constant 1 

- M g s i n  61+FA +FT = O  
x, x, 

J. l. 

FA +FT = O  
y 1  y1  

E: Steady, climbing flight: 

M g c o s  O1+FA + F T  = O  
Z l  z, 

A I 

= O  MA + M T  

MA + M T  = O  
1 "1 X 

1 Z 1 Z 

(10) 
i 
i 
! 
i 
I 

The equations are identical to equations (lo), although it must be noted that 
atmospheric density variation will lead to unsteady motion for constant control 
settings. However, this unsteady motion may be regarded as negligible for shallow 
climbs over moderate time periods. 

c. Steady, turning flight: 
v l=o  y O1 = constant and q1 = constant 

MQIWl = - Mg s in  8 + FA + F 
1 1 TX x1 

M (RIU1 - PIW1) = Mg cos 8,. sin q1 + FA + FT 
Y l  y 1  

- MQ,U, = ~g COS e COS 9 
1 Z 

1 

A J. 

where the kinematic relations, equations (9), may be used to eliminate Q1 and P1 by 
introducing 



1 

tan el 
Q1 = R1 tan8 

R1 cos g1 PI = - 

d. Steady PUII-UP: 

V 1 = P 1 = R 1 = O  and q I = O  

+ FT MQIW, = - Mg sin O1 + FA 
1 x1 X 

F A  + F T  = O  
y1 y1 

- MQIU1 = Mg COS 8 + F + F T  = O  
1 A" 

MA + M T  = O  
1 x 1 X 

MA + M T  = O  
Y1 Y 1  

MA +MT = O  

1 z 1 z 

The kinematic relation, equation (9a), gives 

6, =Q1 
To maintain a steady pull-up it is necessary that 

Mgcos e Q = F ~  + F~ 
1 x1 l 1  x 

and 

Mg sin Q, = FA + p  
Z 1 T Z 1  



5.1.3 Perturbation equations of motion.- Many of the major objectives of a stability 
and control evaluation of an airplane are achieved by considering motion deviating from a 
specified steady reference motion of the airplane. Th6 deviation is often termed a 
perturbation, and the variables that describe the motion are taken to have values consisting 
of the sum of the reference value and a perturbation value. The notation of par. 5 . 1 2  is 
used to identify the reference values of the variables, while a lowercase letter or a subscript 
p is used to identify the perturbation values, e.g., 

u = u l + u  

The perturbation 
motion, equations ( 5 )  

equations of motion are obtained from the general equations of 
and (6) ,  by replacing the velocities, accelerations, and Euler angles 

appearing in tliose equations by the sum of a perturbation and a reference value. The 
reference values correspond to steady motion so that their derivatives with’ respect to time 
vanish. 

The substitution of perturbation and reference values for the values of the variables 
appearing explicitly in equations ( 5 )  and ( 6 )  does not constitute an approximation. 
However, an assumption is made regarding the aerodynamic and thrust terms. These terms 
are functions and are, in general, functions of the velocity of the airplane and its 
acceleration. It is assumed that the functionality is such that it is possible to  write 

Clearly, this eliminates functionality that is transcendental as in the case of the gravity 
forces that have transcendental (harmonic) dependence on the Euler angles. 

The perturbation form for the equations of motion may now be written as 

Mi + M[Q1Wl - R V + Q1w + Wlq + qw - R1v - Vlr - rv] 1 1  
= - M g  sin (01 + 8 ) + FA + FT + fA 4 fT 

X x x1 x1 
P 
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&I+ + M(RIU1 - PIWl + R1u + Ulr  + ur - P1w - W1p - wp) 

= M g  cos (e, + 0 ) sin (9, + $  ) + FA + FT ’+ fA + fT 
Y1 Y 1  Y Y P P 

MUj + M(PIV1 - QIU1 + PIV + VIP + PV - QIU - Ulq - qU) 

= M g  COS (e, + 8 ) cos(9, + gP) + FA + FT + fA + fT 
z Z z1 z1 

P 

Ixx fi - Ixz (c + QIP + Plq + Pq) + (Izz - Iyy) (QIr + R1q + rq) 

=mA + m  
X TX 

2 I 4 + Ixz (2P1p + p2 - 2Rlr - r ) + (Ixx - Izz) (Plr + R1p + rp) 
YY 

T =mA + m  
Y ‘ Y  

I G - I (6 - Qlr - R,q - qr) + (Iyy - I& (P1q + QIP + Pq) ZZ xz - 
=mA + m  

Z TZ 

(14c) 

(14d) 

Equations (14) are called the arbitrary perturbation equations of motion. The tenn 
“arbitrary” is used because no -restrictions have been placed on the admissible magnitudes of 
the pe,:urbations. They govern the motion of a rigid airplane to tl same order of 
approximation as the general equations of motion, equations (9, except that the 
aerodynamic and thrust terms have been separated into reference and perturbation terms. 
That separation led to a simplification of equations (l4d), (14e), and (140. Since the values 
of the reference motion variables satisfy the equations of motion themselves, those terms 
involving only reference motion vanish. This simplification is not possible in equations 
(14a), (I4b), and (14c) because of the sine and cosine functional dependence of the gravity 
force components. 

Large perturbation equations of motion are obtained by restricting perturbations of 
the Euler angles 8 and @ to a magnitude less than about 7.5 deg. Then the trigonometric 
functions of these angles are approximated by 
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COS e P = 1 sine P = e p  
COS@ P --1 sin Fp ..;p 

Introducing the epproximations of equations (15) into equations (14a), (14b), and 
(1 4c) leads to 

 MI^ + M(Qlw + Wlq + qw - R1v - V1r - rv) 
- 

M+ + M(R u + Ulr  + ur - plw - wlp - wp) 1 
= Mg (-8 sin O1 s in  8 + 9 cos Q1 cos el) + fA + fT 

. -  Y Y  P 1 P  

MG + M(P1v + V1p + PV - QU - Ulq - CyU) 

= - Mg ( e  sin el cos Q + 8 sin q1 cos el) + fA + f 
P 1 . P  Z -*Z 

Equations (16) along with equations (14d), (14e), and (140 represent large 
perturbation equations of motion, It should be noted that terms involving products of B p  
and Q p  have been deleted. This is consistent with the approxirnations represented by 
equations (1  S), which are truncated power series expansions of sine and cosine functions. 
The system of equations is linear in terms of the perturbation Euler angles but nonlinear in 
the perturbation velocities. 

Small perturbation equations of motion are obtained by deleting products of the 
perturbation motion variables, Equations (1 4) reduce to 

Mi + M{Qlw + W q - R1v - V r) = Mg e COS o1 + fA + f (17a) 
1 1 P X TX’ 
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r - P IV - W1p) = M g  (- 8 sin O1 sin q1 
1 1 P J l t  + >I 

316 + 31(Plv + V1p - Q1u - U1 q = - hfg ( s in  COS 
P 

+- 9 s in  9 cos 0 ) + fA + fT 
P 1 l 2  2 

(17c) 

and the kinema tic relations, equations (9), become 

1 i = - Q ~  qp s i n  Q + q cos g - R Q cos q1 - r sir q 
P 1 1 1 P  

6, = p  + (Q 9 cos g1 + r s in  q1 - R q~ sinql 
1 P  1 P  

.f g cos ql) tan O1 + (Q, s i n  Q + R1 cos Q ) q~ (18W 
1 1 P  

The terms in the small perturbation equations of motion appear to be of consistent 
order of magnitude. They are a set of linear ordinary differential equations provided the 
aerodynamic snd thrust terms are written as linear functions of the perturbation motion 
variables. The form of the aerdynamic and thrust terms is the subject of par. 5.1.4 and app. 
B. 

40 



;An additional simplification is possible if consideration is given to the orclers of 
magnitude of the reference motion variables. In the anGysis of airplane response, the 
perturbation motion variables have small but finite values. t h e  limits on the validity of the 
application of the small perturbation equations are set primarily by the limit of validity of 
linear aerodynamic theory. In many cases, this limitation may apply equally to the 
prediction of the aerodynamic forces associated with the reference motion; hence, in these 
cases the reference motion rotation rates aad sideslip velocity must 5e limited to the sam- 
orders of magnitude as those of the perturbation variables 

Equations (17’ apply to  the case of stability and control analysis when the 
aerodynamic terms are obtained from a linearization of the aerodynamics about some 
condition where the aerodynamic phenomena are basically nonlinear. The perturbation 
motiun variables in this case are then limited in magnitude by the range of validity of the 
linearization. Aerodynamic terms in this ca5e are chbtained empirically from test data. 

Many important stability and control evaluations are performed on c,ses where the 
magnitudes of the reference motion variables ari: sufficiently smail to  permit their products 
with the perturbation variables to  be neglected. This is the case where stability and control 
characteristics of transport aircraft in their cruise condition are concerned. For these casts 
the small periurbation 

MC 3. M W l q  = M g  

equations may be reduced to  

e COS o1 + fA + fT 
P X X 

M$ - MW1p=-Mg(e sin Ol sin Q - 8 cos p1 cos 01) + fA + frr 
Y Y  P .  1 P  

! 19b) 

M 6  + MUlq = - M g ( e  sin el cos q1 + q l  sin cos tl)+ fA + fT 
P P 1  z z 

I 6 - 1  E=m, + m  
TX 

xx xz x 

T I 4 ~ m  + m  
YY A 

Y Y 



T : - I  f i = m  ern 
*Z *Z 

ZZ xz 

and the kinematic relations reduce to 

1 e = q cos Ol - r sin 9 P 
9 = p + (r sin 9 + q cos Ql) tan 1 

- 
P 

-- 5.1.4 Aerodynamic derivatives.- The concept of an aerodynamic derivative or, more 
commanly, a stability derivative is developed in app. B. It relates a component of 
aerodynamic force or moment acting on an airplane to a motion variable or  a parameter that 
describes a change in airplane shape such as a control surface deflection angle. The change in 
airplane lift with chdng in airplane angle of attack is expressed as 

'fie nokition of a partial derivative is appropriate, since all other motion variables and 
shape parameters are held constant while the angle of attack is allowed : iry. Besides, the 
lift is not, in generd, a linear function of angle of attack or any of the other variables that 
influence -he airplane lift. The stability derivative CL, , therefore, varies with the airplane's 
flight condition. For perturbation motion of the airplane about a reference motion, the 
stability derivative is evaluated for the reference motiori and may be considered to be 
constant in the perturbation motion. This local linearization, discussed more fully in Sec. 7 
of this volume and ill detail in app. B, is a widely accepted prxtice (refs. 4 and 6) .  The basic 
mathematical theory is given by reference 7. 

Another widely accepted practice is to introduce a stability axis system (ref. 4, p. 103). 
This is a body-fixed-axis system having Xs forward and in the direction of the freestream 
v?locity in the reference motion of the airplane. The body axis system X,Y,Z is rotated 
about the Y axis from the stabiiity axis system by an angle @ref, as shown in the following 
sketch: 
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where 7 1  is the freestream velocity vector in the rzference motion so that 71 = -vel. The 

purpose of the stability axis system is to introduce a simplification in the equations of 
motion, which & discussed h ref. 4 but is not used in this study. 

The reference angle of attack is used but is denoted as 01, Le., the angle of attack in 
the reference flight condition. Lift and drag of the airplane are measured in a wind axis 
system such that in reference flight 

1 FA ..F 1 1  = - D1 cos a i- L sin0 
*1 

and 
1 FA = - D sin al - L1 cos CY 1 

1 2 

In the perturbed motion 

FA =.- D cos (a +a) + L sin (a +a) 1 1 z 

FA = - D s i n ( a  +a) - LCOS (a +a) 
1 1 z 

Using these relations and the small angle approximation such that 

1 
sin (al +a) = sin a + at cos CY 

1 
and 

1 cos (a1 -t- at) z cos a - CY s in  at 1 



the perturbation aerodynamic forces 

= - cos cy D + sin atl D1 cy + cos at1 L1 a + ‘sin a L fA I ?  1 P  

L1 Lpa 

X 

+ s i n &  Il a +  cos 
1 P  

fA = - c o s @  D a - s i n a  D -cosat L + s i n 0  L cy 1 1  1 P  1 P  1 1  

1 P  1 P  

z 
- c o s a  D a + s i n a  L cy 

- 
for small perturbations, products of perturbation quantities are neglected so that 

The perturbation components of aerodynamic force and mom-nt are written in terms 
of stability derivatives as (app. B) 



U bb Pb 
+ C I j  2v +5 2v 

1 c1 C 

4 5  



TRe petturbution components of thrust forces and moments are 
b 

‘ b  

2CT V + C C T  
mlVcl  j m 

‘j 
Y 

m = q  S b 2 C  A + X C e r n  qj) 
TZ ( Tl l lvCl  J 

5 

The above results may be combined with the perturbation equations of motion of par. 
5.1.3. The perturbation force components in the X and 2 directions must be computed 
differently for large and small perturbations. Equations (21) must be used to relate 
perturbation lift and drag to the X and Z directions for large perturbations; for small 
perturbations equations (22) must be used. 

5.2 Equations of Motion for a Flexible Airplane 

5.2.1 Lumped parameterization.- In the preceding section, the motion of a rigid 
&plane was described in terms of six degrees of freedom of the airplane’s center of 
gmvity-three translational and three rotational. The effects of inertia Cnd gravity can be 
completely accounted for in terms of forces and moments applied at the airplane’s center of 
gnvity. And, although the distribution of aerodynamic surface stresses depends on the 
shape of a rigid airplane, its dependence upon the rigid airplane’s motion may be expressed 
entirely in teinis of the motion of its center of gravity. Finally, the effects of the 
aerodynamic surface stresses on the rigid airplane’s motion are accounted for by 
aerodynamic forces and moments acting at the airplane’s center of gravity, 
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.When an airplane is flexible, however, motion which is relative to the center of gravity 
must be considered. Equations of motion written entirely in terms of center of gravity 
motion variables and in terms of forces and moments considered to act at the center of 
gravity are no longer sufficient. The additional n;’tr.on is called elastic motion, and it is 
common terminology to refer to “elastic” degrees of freedom. 

The flexible airplane is essentially a continuous, elastic body. -As such it has a 
continuous infinity of elastic degrees of freedom. Thus, unless some simplifying approxima- 
tions are introduced the equations of motion for the elastic motion will be integrodifferen- 
tial equations (app. A, equation (6.35)). To avoid this complication the airplane is divided 
into a large number of elements. Each element is regarded to have at most six degrees of 
freedom. If their number is n, the equations of motion of a flexible airplane will govern 
motion in 6n degrees of freedom and be 6n in number. Certain approximations will be 
introduced to reduce the number of equations, but the number of degrec; of freedom will 
remain effectively unchanged. The motion in some degrees of freedom will be dependent 
motion. This is the subject of several later paragraphs in this volume as well as of much of 
app. A. 

This paragrzph, as well as several of those following, makes use of matrices in the 
formulation. When matrices of a particular type or matrix operations are introduced, or 
properties of a matrix are discussed, an article will be cited from Frazer, Duncan, 31 d Collar 
(ref. 3 ,. The reader may refer to the cited article for the appropriate explanation. 

Letting the total volurne of the airplane be represented by V and the volume of the ith 
element by Vi, then 

n v = c  vi 
i.-l 

The total mass of the airplane is M and the density is PA. The mass of the ith element is, 
therefore, 

Also, recalling tha tF is  the position relative to the airplane’s center of mass, the position of 
the ith lumped mass is taken to be a t  the point 



This is the centroid of mi and, although refinements may be introduced, the density is taken 
to be uniform over the eleincnt of volume Vi sc that 

which is the location of the geometric cenrroid. 

The geometry of the flexible airplane is defined as shown by fig. 5 .  

Deformed shape 
,NY 

X' Y' Z' Earth-fixed axis 

2' ... 
FJGU- A- AXIS SYSTEM FOR THE DEFORMED SHAPE AND THE UNDEFORMED SHAPE 

OF AN ELASTIC AIRPLANE 

The elastic displacement of a mass particle is a vector, 2, which is a function of 
position and time. I t  describes the change in position relative to the airplane's center of 



A N 

gravity. This elastic deformation carries each mass particle from its positioii, r, in the 
undeformed airplane to  its position, 7, in the deformed airplane. Thus, the elastic 
displacement vector is a function of position and time as t 

.L - -  
d = d ( F ,  t) 

where it may be noted that the dependence 0.: ,\*,sition has been written as a function of its 
undeformed position,? This is referred to as a Lagail;kin description (ref. 8, p. 29). 

For the lumped parameter formulation each volume element is taken to displace as a 
whole with the mean displacement $en by 

- d. =-Li p,fidV 
1 m .  

1 

- 

(28) 

The totality of all elastic displacements is written as a column matrix (ref. 3, Art. 1.2) as 

Elastic rotations relative to the airplane as a whole occur for a mass particle and are 
given as 

,BXT 1 

When the airplane structure is regarded as a continuous body, the rotation of the mass 
partides does not contribute to the inertia forces. When the airplane is represented by a 
collection of elements with lumped niasses, it is tempting to include rotational degrees of 
freedom and the rotational inertias of the lumped masses. But on consideration of the 
practical numerical problem of predicting the motion of the lumped masses, it is better to 
neglect rotation and include only the inertia forces generated by their mean translational 
motions. 

The number of dynamically participating degrees of freedom that may be included in a 
numerical analysis is limited. Let the upper Linilt of that number be m. If rotational degrees 
of freedom are included dynamically, the total number of lumped masses is m/6. If they are 
ignored, the number of lumped masses may be twice as great, Le., m/3. The larger number 
of lumped I Y L S S ~ S  more closely represents the continuous airplane. The smaller number must 
have mean rotations that are not readily defined as well as moments and products of inertia 



that are even more difficult t o  define rationally. Therefore, the formulation that ignores the 
dynamics of mean rotations of lumped masses is the better approximation. 

I' 

'It must be clearly understood that rotational motion of the lumped masses has not 
been set to zero in the above. In fact, the aerodynamic surface stresses are disendent upon 
the surface slope of the airplane, and the surface slope changes as the airplane deforms 
elastically. The lumpEd surface, slope (or mean slope) will be related to  a mean rotation of 
the element, so that these quantities enter the problem through the aerodynamics even 
though their dynamic influence is neglected. 

It is desirable to have a convenient method. of computing the mass properties of the 
entire airplane from the values of the lumped musses and their positions relative to the 
center of gravity of the airplane, To do this consider the manner in which the moments 
and groducts of inertia are introduced in mechanics, Le., as a consequence of the integral 
expression for angular rnomentum about the center of gravity: 

This expression may be replaced by 

so that the entire angular momentum is replaced b j  53e sum of the contributioiis to  the 
angular morxentum by each lumped mass. Similarly, the total linear momentum is 

d 
U M % = C  m i v c  

i=l 

Introduce the diagonal mass matrix (ref. 3, Art. 1,2), Ism] , as defined in app. A, par.. 
6.3.1, Le., 
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Ern] = 

and the rigid-body mode shape matrix [$I defined as 

n ' m  

m 
1 

where 

1 0 0 0 zi -yi 

yi -xi 0 

1G.J =[o 1 0 -zi 0 xi] 

0 0 1 

Also, introduce the velocity matrix, written in transpose form (ref. 3, Art. 1.2) defined as 

{VIT =LU, V, W, P, Q, R J (33) 

(32a) @ 

5 1  



SO that components of momentum may be written as 

where the definition of the inertia matrix [MI is given by 

Thus, the components of linear and angular momentum for the airplane are obtained in 
simple matrix expressions, equations (34) and (35). 

Tne aerodynamic and thrust forces act at the external surface of the airplane. Let the 
total external surface, S, be subdivided into the external (exposed) surfaces of the lumped 
massts, Si, SO that 

n 

i=l 
s=c si 

Then the total aerodynamic and thrust forces on the airplane may, in accordance with 
equation (3)  and this subdivision of the surface, be represented as 
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:. where Fi is the fot .I, on the ith lumped mass. Similarly, from equation (4) 
e 

- -  n 
= ri x Fi 
i=l 

Now, introduce the matrix definitions of the components of the aerodynamic forces and 
moments: 

{FA}T= F , FA , FA , M , b:: M 
L A X  y *x ' ^  Y AzJ 

the components of the thrust forces and moments: 

and the componer's of element surface forces: 

Using the rigid-hdy mode shape matrix [ @ I ,  it follows that 

rn 

(37) 

(3 9) 

so that a simple matrix expression relates t;: surface stresses !o  cverall airp1ar.e forces anid 
moments. 



The results presented in this section form the basis,for representing a continuous, 
flexible airplane as a collection of lumped masses. However, :either of two important details 
have as yet been considered. These are the dependence of elastic constraining forces, and the 
dependence of the aerodynamic forces, on the mean elastic displacements {d}. The elastic 
constraiiling forces are discusscd in par. 5-22. The aendynamics are discussed in Sec. 7. 

The thrust forces may seem to have been slighted in the discussion. However, their 
direct effect in terms of forces applied at the engine attachment points may be readi!y 
introduced in an obvious manner and the induced effects on the aerodynamic forces must 
be accounted for in the stability derivatives. 

5.2.2 Structural flexibility.- - Tlie flexibility of the airplane is fundamental to the 
considerations of this report. This paragraph introduces concepts to describe what is meant 
by flexibility in physical terms and presents the equations that describe it. An exposition ol' 
the theory underlying these equations is the subject of par. 4.2.3 of app. B. It suffices to 
note here that the underlying theory is that for infinitesimal deformation of a perfectly 
elastic, isotropic, and homogeneous solid. It is often called the classical theory of elasticity 
and is a linear approximation of an exact, nqnlinear theory of elasticity. 

- 
The chanse in shape of an airplane when it is subjected to external loads is a 

manifestation of structural flexibility. 'he magnitude of the change, viz; deflection or 
deformation, is in approximately constant proportion to the load producing it. Thus, the 
deflection measured at  a point A on the structure is linearly related to the load P at another 
point B. This is expressed as 

6 = C P  

where the corstant of proportionality, C, is termed the flexibility of the structure aa30ciated 
with the two points, A and B. 

A general description of deformation follows by considering two positions of each 
point of the structure. They are the position Fbefore deformation and the positionrafter 
deformation, both of which are measured relative to the airplane's center of grwity. The 
deformation or displacement vector is given by 

- -  d = r - ?  

The displacement vector was originally introduced in par. 5.2.1, where the mean 
displacement of  an element of the airplane was defined by equation (28) as 
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In the following, the mean displacement vector a t  the ith element is relat- . 
applied at the ifh element as well as all other elements. 

The mean surface force on the jth element is: 

' I  3 

An element of the airplane also experiences body forces such as inertia an2 = 

These are proportional to  the airplane density, and the mean values for thc I:' 
defmed as 

where d2r)dtz i s  the acceleration relative to the earth-fixed reference systex 

.b The mean displacement of the ith element ,a to forces applied to thc . 
defined as 

A -  

d. 1 = -C 0.. *(zj -.T) 
13 

and the displacement of the ith element due to forces at all elements is given 1v 

Further, this expression is valid for all elements, so that there 3re n equation\ 1 

(45b). 



- 
The subscript zero on the diadic Coi. is used i indicate that the structure is clamped at 

the center of gravity, Le., the point on th i  airplane that was at the c.g. before deformation is 
constrained against translation or rotation. That point ma) be allowed io trinsltlte as To 
relative to a reference axis system with origin at the airplane's c.g. I t  may also be allowcd to 
rotate through an angle e', relative to the reference axis system. Thus, the mean 
displacement xi relative to the reference axis system is given by 

By defLrling the column matrix 
- 

the matrix definitions of par. 5.2.1 may be used to write equation (46) as 

where the flexibility matrix (ref 3, Art. 8.1 l), [C,] , is made up of n submatrices 3 by 3 in 
size and given by 

Oxx..  
C 

C 

c 

u 
om.. 

13 

ozx. * i 9 

oxz.. 

oyz . . 
13 

ozz.. 
13 l i  

0 

C 

C 

so that the flexibility matrix [C,] is 3n by 3n in size. The typical element CoZyij is the 
component of deflection in the z direction at the ith element du:: to a unit component of 
force in the y direction at the jth element,. 



Equation (48) is the result required in the equations of motion of a flexible airplane 
represented by lumped parameters. However, the flexibility matrix must be computed from 
consideration of the structural details of the airplane. The flexibility matrix so derived will 
not b:: in the fonn defined for equation (48). The structural analysis treats the airplane 
structure as a continuous body. Thus, the flexibility matrix [eo] must be obtained from a 
continuous analogue using the type of averaging process that led to definitions of mean 
displacements and forces in par. 5.2.1. 

The problem of  computing the flexibility matrix [C,] is complicated by the fact that 
the structural analysis leads to a flexibility matrix that relates displacements at points to 
forces applied at points. The method of computation of [eo] is not immediately obvious. 

The structural analysis deals with an idealized structure made up of a collection of 
simple structural elements (app. B). For example, a typical wing structure is made up of 
pznels of skin cut out by ribs and spars, the webs of the ribs and spars, as well as the rib and 
spar caps. The structural properties of each of these elements are known. The structural 
anaiysis proceeds by requiring the forces on the elements to be in equilibrium and by 
requiring the elements to remain joined together under load, i.e., continuity. The problem 
arises from the fact that this leads to a flexibility matrix in terms of forces and 
displacements at the points where the structural elements are joined. 

Joining points appears inaccurate for the joining of some elements, e.g., a spar cap and 
a spar web. These elements obviously join along a line. The structural analysis will not 
satisfy continuity aiong the entire line of intersection. It will satisfy continuity only at a 
finite number of points, called node points, on the intersection. 

One method of structural analysis, the displacement method, is readily illustrated by a 
simple one-dimensional example. For greater detail, reference is made to app. B. Consider an 
assemblage of springs: 

Kb 

1 2 3 4 

The springs have stiffnesses represented by Ka, Kb, and Kc, and the nodes are numbered as 
shown. There will be four nodal forces, Fi and four nodal displacements, di. Even though 
forces exist in the springs at all points between nodes and all interior points undergo 
displacement, only the nodal values will be required for the structural analysis. 



The element stiffness matrix for h?e spring from node 1 to  node 2 is a 2 by 2 matrix. 
The fmt cdurnn is the forces at the nodes for a unit displacement of node 1 to the right, 
Le., F1 = Ka, F2 = -Ka The second column is the forces at the nodes for a unit displacement 
of node 2 to the &ht, i.e., F1 = -Ka, F2 = Ka, SO that the elqrnent stiffness is given by 

= [-; 
Similarly, two other element stiffness matrices may be written as 

and 

The stiffness matrix for the entire assemblage is obtained by forming a composite matrix as 
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r 

and may be used to  write 

Pt = [KI f d l  

or 

0 

K a + K b  -Kb 

-Kc 

Kb + Kc 
0 0  

(49) 

0 

-KC KC ~~1 
The stiffness matrix [K] is singular (ref 3, Art. 1.8). Thus, the displacements are not 

uniquely related to the forces. This has to be the case, since an equal addition to each of the 
displacements does not cause a change in the forces. That addition would represent a 
translation as a rigid body. 
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The structure may be clamped at node 4 such that d4 = 0. Now, the displacements are 
determinant. Let the matrices be partitioned (ref. 3, Art. 1 .7), as 

c 

The reduced stiffness matrix K11 has an invcrse (ref 3, Art. 1.1 l), Le., [ I  

and it follows that 

The 
Finding the composite stiffness matrix to be singular in the above example is typical. 
composite stiffness matrix for an entire airplane is also singular. The singularity is 

removed by setting enough nodal displacements lo zero that the airplane structure is 
constrained against translation and rotation. The requirement is satisfied if a single point is 
clamped against rotatioil and translation. When this has been done the flexibility matrix 
may be obtained by inverting the rzduced stiffness matrix. The displacements predicted by 
this matrix are changes ia position relative to a coordinate system with origin fixed at the 
clamped point. 
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The example illustrates the use of element stiffnesses to Pescribe the elastic properties 
of a structure in terr :s of forces and displacements at the nodes. The forces applied to the 
airplane are distributed. Also, the displacements of interest are mean displacements. This, 
neither the force nor the displacements used ig the aeroelastic analysis are those used in the 
structural analysis. This “interface” problem must be solved when the finite element 
structural analysis methods are used to define the elastic properties of the structure. 

When the aerodynamic surfaces of the airplane are of reasonably high aspect ratio, say 
6 or larger, the interface problem discussed above may be resolved by treating the 
aerodynamic surfaces as beams. The actual structure is idealized as a beam lying along the 
elastic axis (or locus of centers of flexure, ref. 8) of the actual structure. Torsional stiffness 
of the elastic axis is defined as the GJ distribution. The flexural stiffnesses of the elastic axis 
are defined as the EI, and EIy distributions. The volum’e elements, Vi, of the lumped 
parameter descdption are attached to  the elastic axis by rigid, massless members. The 
structure appears a s  in the following sketch of a wing. 

axis 

The lumped masses are located at the centroids and are connected to the elastic axis by the 
rigid, massless members shown as dashed lines. 

The stiffness matrix may be developed for this idealized structure by the finite- 
element, displacement method just described. The flexibility matrix obtained will be 
appropriate for the lumped parameter formulation, [C,] , No interface problems occur and 
slopes associated with the lumped masses are readily computed. 
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5.2.3 Internal equilibrium.- - The basis for writing internal equilibrium equations for 
the airplane was introduced in par. 5.2.2. There it was noted that the st.:rctural deflections 
for the lumped parameter formulation are represented by 

The matrix{R}is the matrix of body force components acting on the lumped masses. 

The body force vector on the ith lumped mass is due to acceleration and gravity. It is 
expressed as 

Carrying out the integration results in 

where d z ~ d t 2  is the mean acceleration of the centroid of the ith lumped mass relative to 
the earth-fixed-axis system, x',y',z'. Letting the angular velocity of the airplane about its 
center of gravity be represented by the vector z, the acceleration of the ith lumped mass 
may be expanded to give 

d2F; avc - -  a 2 3  - q -L 

- = -  + w x v c  + 2 - t 2 0  x- a t  a t  a t  dt2 
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where 

is the time rate of change cipparent to  an 
observer rotating with the airplane 

a 
7 I 

I a t  

-+ &% 
V, =- is the velocity of the zirplane center of 

gravity relative to  the earth-fiied-axis 
dt 

system, x' ,y' ,z' . 
It is assumed that the rotation rate 0; large, flexible airplanes i s  sufficiently small that 

the Coriolis forces and a portion of the centrifugal forces may be neglected 5;r comparison 
with the other inertial forces, i.e., 

4 

a di 
2Gx -- a t  mi = O  and o'x (01.y r.) 1 = o 

so th2t the inertial force on the ith lumped mass is approximately 

= m  (56) 

In the case of steady reference motion of the airplane, as in par. 5.1.2, the inertial 
forces acting on the mass elements reduce to  

where, agah, the subscript 1 denotes the values of the motion variables in the steady 
reference motion. Also, as in par. 5.1.2, the gravity force on the lumped masses is 

- & * -0 

g1 mi = mi g (-sin el i + cos el s h  j + cos el cos Ol IC) (58) 

The perturbation equations of motion were obtained in the case of the rigid airplane in 
par. 5.1.3. I t  is shown in app. A, par. 6.3, that the perturbation equations of motion f x  the 
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rigid airplane may be expressed in the luinped panmeters as 

(59) 

where (Vp 1 = { V} - {VI } is the matrix of perturbation velocities corresponding to the 
vdocity matrix of equation (33). The perturbation matrix r' } represents perturbation 
of the position and orientation of the airplane's center of gnvity, 

OP 

The matrices [Mi] and [M2] XG defined in app. A by equations (6.119) foi- small 
perturbations and equations (6.120) for large pertarb2tions. The matrix F-111; contains 
coefficients arising from centrifugal accelerations and I M2 I contains coeficients appro- 
prikte to g-avity forces. 

The perturbation body forces actins on the lumped masses of the airplane are given by 

so that the perturbation form for internal equilibrium, equation (52), may be written as 

where 

This result and equation (59) constitute the perturbation equations of motion for a flexible 
airplane. 
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Internal equilibrium for the dlrplane in reference motion may be expressed as 

where 

16 I { a,) are the lumped mass accelerations in the 
reference motion and 

[ @ I { g]} are the refzrence gravity vector components. 

A more conve. ient formidation of internal equilibrium may be achieved by 
introducing new variables for the elastic displacement { d} . Let 

(64) @ 
where the matrix[ 8 1 is a twnsformation matrix {ref. 3, Ark 9.3) and the matrix {u} is a 
column matrix of generalized coordinates. 

It is desirable to require that the generalized coordinates be linearly independent. This 
is not the case with the elastic displacements (d} , which are displacements relative to the 
airplane's center of gravity. As such, from app. A equation (6. I30), it follows that 

There are 3n components of -{ d} and, since equation (65) represents six linear relations, 
there are 311-6 linearly independent generalized coordinates { u} . The transformation 
matrix [ 8 1 has 3n rows and 3n-6 columns. 

A particularly convenient choice for the transformation [ 91 consists of letting the 
columns of this matrix be the eigenvectors generated from an eigenvalue problem 
constluted from the internal equilibrium equations. 

Let the airplane be at rest, or at most in uniform translational motion in free space, 
and let the airplane be in a state of vibration. Internal equilibrium, equation (52), is then 
represented by 
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which, on utilizing equation (65) to determine the elements of { €3) , may be written as 

I 

{d) = - [e] fmJ {d} 

where 

Introducing the transformation, equation (64), into equation (67a) results in 

[@I {u) = - [El F.I] 1 ii (68) 

where it has been assumed that the transformation matrix is not a function of time. Each 
column of the transformation matrix may be taken to be a solution to 

which, by a separation of variables (ref. 9, p. 430), may be written as 

and 

2 ii. 4-0. u. = 0 
1 1 1  

where W i 2  is the separation constant, 

Equation (69a) represents the eigenvalue problem that was being sought. It has 3n-6 
linearly independent solutions, eigenvectors, { Q i} corresponding to 311-5 eigenvalues Wi2. 

The eigenvectors represent free vibration mode shapes for the airplane. From equation (69b) 
it is readily apparent that W i  is the frequency of a simple harmonic motion. This is a natural 
frequency of the freely vibrating airplane. The eigenvectors {gi} are the mode shapes, Le., 
the shapes into which the structure deforms when vibrating freely. 

66 



The transformation of coordinates, equation (64), may now be given more meaning. 
The displacements {d} that describe the elastically deformed shape of the airplane are a 
linear combination 

of shapes {qi}. The generalized coordinates ui are the amplitudes of the shapes. By 
properly adjusting the amplitudes, the elastic deformation of the airplane under ihe action 
of any system of self-equilibrating loads may be represented by eqtiation (64). Thus, the 
generalized coordinates ui are completely satisfactory for expressing elastic motion. A 
considerable advantage accrues through their use. The internal equilibrium equations, when 
transformed, assume a form much simpler than that of equation (62). 

The perturbation internal equilibrium equations may 3e written in terms of stiffness as 

This result is derived in app. A as equation (6.147). On introducing the transfonnation and 
multiplying equation (70) by the transpose of the modal matrix, it is found that 

where use has been made of the orthogondity properties 

[@I * E l  [ @ I =  IfEJ 

and 

(72) 

(73) 
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.from app. A, equations (6.157) and (6.158). In addition, it may be noted that the term 
-mrrcsponding to rigid-body accelerations and gravity { E} vanishes. This is a consequence 
of equation (65), which may be used to write 

This last result may be interpreted as an orthogonality of the free vibration mode shapes 
{ @i} , the columns of [ Q ] with the columns of [ $ ] when weighted by the mass matrix. 

The columns of [ 8 1 may be regarded as rigid-body mode shapes, and that term will be 
applied in the following in calling [ $ 1  the rigid-body mode shape matrix. 

Two obvious advantages have accrued from the transformation. The generalized 
stiffness and mass matrices, m.I and fd are both diagonal matrices. Thus, equation 
(71) is uncoupled in the left-hand member. If the right-hand member is replaced by a 
column matrix of generalized perturbation forces, is., 

internal equilibrium in terms of the generalized coordinates expands into 311-6 scalar 
equations as 

. 
- - .. 

‘ m  3n-6 U3n-6 + K3n-6 ‘3n-6 = Qp3n-6 

When internal equilibrium is expressed by writing out the equations as they are here, the 
advantage gained from the use of the generalized coordinates ui is readily evident. Only one 
of them occurs in each of the left-hand members. This is the meaning attached to  the term 

’ “uncoupled.” The only coupling in equations (76) is in the. right-hand members. The 
generalixed perturbation forces Qpi are coupled. In general, each is a function of Ui, ;i, Ki 
and the motion variables u, v, w, p, q, rand their time rates of change. That dependence will 
be discussed later in thc subsection regarding aerodynamic derivatives. 
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It is important to note that the motions governed by the internal equilibrium equations 
are not motions relative to an inertial reference frarriz. The elastic displacements { dp} in 
equation (70) and the generalized displacements { u) in' equation (76) describe motion 
relative to a body axis system. The body axis system may be rotating and accelerating so it 
is not, in general, an inertial reference frame. Equations (70) and (76) are not exact 
expressions of Newton's lab of mass times 'acceleration equated to applied force. They are 
approximations, unless the center of gravity of the airplane is moving with a constant 
translational velocity. The approximation is valid only if the Coriolis and centrifugal 
perturbation forces are negligible by comparison with the other forces acting on the airplane 
as noted by equations ( 5 5 ) .  

p_ 5.2.4 General equations of .motion.- In 2 preceding subsection the lumped 
parameter formulation was used to formulate internal equilibrium for perturbatim motion, 
equations (62a) and (76). Internal equilibrium for the airplane in its reference motion w3s 
given by equation (63). Also, the perturbation equations of motion for motion of the 
airplane as a whole were obtained by analogy with the rigid airplane perturbation equations 
of motion. They were given by equation (59). 

The system of equations listed is complete for She analysis of the stability of an elastic 
airplane with two exceptions. The dependence of the aerodynamic and -thrust forces on the 
akplane's motion has not been delineated, and equations of motion for the motion of the 
airplane as a whole have not been given for the reference motion. Those equations are 
obtained from general equations of motion. That derivation is precisely the same as the 
derivation for the rigid airplane. Equations (8) and (91, for reference motion of a rigid 
airplane, followed directly from the general equations of motion .for a rigid airplane, 
equations ( 5 )  and (6). 

The only distinguishing feature in the application of these results is obscured at this 
point of the development. The aerodynamic and thrust forces and moments depend on the 
airplane's flexibility. If the moments and products of inertia are denoted by the subscript 
one to indicate that they are evaluated for the airplane shape under the steady reference 
loads, the reference motion equations of motion may be written immediately as 

('i7a) 

M (R1 U1 - P W ) = Mg cos s in  (Dl + FA + FT (7'7b) 1 1  
y1 y1 



- I  )QIR1 = M A  +MT (71d) 

(7 7 4  

x1 x1 

y1 y1 

2 2  I (P1 - R 1 ) + ( I x x - I  1 ZZf ) P I R 1 = M A  + MT 
xzl 

and 

el = Q~ COS ql- R~ s in  ( 7 8 4  
- 

8, = P1 + (Q, sin(& + R1 cos Ol) tan el 

The methods for finding the reference shape of the airplane cannot be described 
without a detailed description of the aerodynamic and thrust terms. That description is the 
subject of par. 5.2.5. The problem of computing the reference airplane shape is formulated 
in par. 5.2.6. 

5.2.5 Aerodynamic derivatives.- Up to this point the aerodynamic forces have been 
introduced simply as a consequence of surface stress, and for the lumped parameter 
formulation this led to a column matrix of components of mean perturbatioa aerodynamic 
forces { f} . The perturbation aerodynamic forces depend on the perturbation motion of 
the airplane. It is stated in app. A, equation (6.172), and shown in app. B that the 
dependence may be approximated by the expression: 

As noted in app. B, the coefficient matrices may be determined by wind tunnel 
measurements. However, theoretical determinations of the matrices in equation (79) are 
based on inviscid, small perturbation flow theory. Without entering into the detailed 
derivations c;f the aerodynamic matrices [ A I ]  ... [ A s ]  , it is easily shown that equation 
(79) is an appropriate form. 



Solutions to the inviscid flow problem are in the form of a perturbation velocity 
potential that satisfies an equation of flow and appropriate boundary conditions. Th.e forni 
of the flow equation has no direct impact on the general form of equation (79). The 
boundary conditions consist of the requirements that the flow be tangent to the surfxe of 
the airplane and thkt certain vortex laws be satisfied in the airplane’s wake. As shown in 
app. B, the boundary conditions at the surface contain only the Perturbation potential (not 
its time rate of change), the perturbations to the airplane’s translational and rotational 
velocity components, and the elastic displacements and their rates of changz. The wi-e  
boundary condition depends on the frequency of the motion W ,  but for small frequencies 
tnis dependence may be eliminated by an approximation. Thus, the perturbation \ elocity 
potential 0 must have parametric deper,dence as 

b 

The perturbation pressure at the surface of the airplane is computed from the 
perturbation velocity potential using Bernoulli’s equation. That computation involves taking 
the first derivative of 8 with respect to time. Thus, the pressure force at the ith element of 
the airplane will have the parametric dependence 

Finally, the aerodynamic theory is a linear one and the pressure is normal to the surface. 
The linear dependence in equation (79) is therefore justified and the components of the 
surface force are proportional to  the surface pressure force and the components of a unit 
vector normal to the surface i i  the reference airplane shape. 

The aerodynamic derivatives for the airplane are computed from equAion (79) by 
using the mode shape matrices. The elastic displacements may be replaced by generalized 
displacements by using the transformation equation, (64). Thus, the forces and moments 
actirig at the airplane’s center of gravity are given by 

fA X 

Y 
fA 

fA Z 
“A 

X 

Y 

z mA 

1 
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. 
b 

The generalized perturbation aerodynamic forces, Qpi, appearing in equation (76) are given 
by 

An aerodynamic derivative is the rate of change of a component of force or moment 
on the airplane due to a change in a motion variable while all other motion variables are held 
unchanged. Thus, for example, 

Yii 
“A 

2 

is the aerodynamic derivative. relating pitching moment to  rate of change of the second 
genzralized elastic coordinate. It is found from equation (82) by setting ti2 equal to unity 
and all other perturbation motion variables to  zero. For an airplane reprzsented as n lumped 
masses, equations (82) and (83) contain (27112-1 8n) aerodynamic derivatives. If there are 
100 lumped masses, then there may be 268 200 aerodynamic derivatives. 

Those aerodynamic derivatives which relate forces and moments at the airplane’s 
center of gravity to motion of the airplane as a whole are contained in the first two ternis on 
the right of equation (82). These aerodynamic derivatives correspond to those introduced in 
the discussion of the rigid airplane and contained in equations (23). This corrcspondence is 
delineated in Sec. 7 of this volume and is developed in detail in app. B. 
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5.2.6 Airplane reference shape (jig shape determination).- The selection of the design 
-shape for an airplane is the result of an optimization process &volving a large number of 
design parameters. When an airplane has a significant ar&ount of structural flexibility, 
allowance must be introduced for the difference in the shape of the airplane as it is when 
manufactured in fabrication jigs and as it is when subjected to in-flight loads. In the case of 
a tmnsport airplane the optimization process usually minimizes the drag of the airplane in 
steady, level, midcruise flight subject to constraints such as minimu'm body diameters and 
wing thickness. The result is a design shape that is the optimum shape of the airp!ane in a 
design point flight condition. The design shape may differ significantly f w n  the jig shape or 
the shape of the airplane in offdesign point flight conditions. ComFutation methods for 
determining the jig and off-design point shape Ire the subject of this section. 

The basic relations required for computation of the offdesign point and jig shapes of 
the airplane have already been developed. Recalling equation (63)  and making use of 
equation.(65), it follows that the elastic displacements in the reference flight condition are 
given by 

The subscript 1 has been added to the flexibility matrix and the mass matrix to denote that 
these matrices are dependent upon the reference flight condition mass distribution. 

The values of the elements appearing in the acceleration matrix {a]) and the 
gravitational matrix (81) of equation (84) are specified by the reference fight condition. 
The aerodynamic and thrust forces {Fl} must be such that the equations of motion for 
the reference flight condition, 'equations (75), are satisfied. They may be written in matrix 
form in an analogy with equation (84) as 

where 

as noted by equation (40). 



;The reference motion of the airplane is a steady motion. In a steady motion the 
aerodynamic equation, equation (79), reduces to  

i 

If it is assumed that the aerodynamic forces are linearly related to the motion variables in 
the reference motion, then equation ( 3 5 )  may be applied to  the reference motion. This is 
not always appropriate. Thus, let 

' 

where a bar has been used on the matrices IAl] and 1x21 to denote that these matrices 
may require empirical determination or, if dekrmined from potential flow theory, may have 
forms that differ from +!me of iheir perturbation counterparts. Aerodynamic control 
surface deflections have been added as the elements of (6 1) using an influence coefficient 
matrix [A,] to relate them to  aerodynamic forces on the lumped masses. Finally, the thrust 
forces on the lumped masses have been included as { FT 1 1 with the subscript 1 extericr to  
the brackets to  distinguish this matrix from the similar matrix appearing in equation (86) .  

Equations (84), (85 ) ,  and (88) may be combined to give 

where the definition of the inertia matrix [MI has been used from equation (35). The 
control deflections { S i }  are the only unspecified quantities appearing in equation (89), 
with the possible exception of thrust. These quantities must be adjusted so that the six 
equations represented by equation (89) are satisfied: This balances the airplane inta the 
reference flizht condition. 

74 



Having balanced the airpime, $he deformed shape inay be determined. Combining 
equations (88) and (84) to find 

all quantities on the right are known from the preceding, so { d l }  is determinable. 

The airplane in the jig is not subjected to loads, including those due tq gravity. Thus, 
{ d l }  vanishes for the jig shape. Letting the quantities on the right be evaluated for the 
design flight condition, the displacements { d l  } describe the difference in the design and jig 
shapes. Off-design point reference motions lead to airplane shapes that are much more 
rcadily obtained from the jig shape. The displacements computed from equation (go), when 
it is evaluated for the off-design conditions, are simply added to the jig shape. 

5.2.7 Perturbation equations of motion.- The perturbation equations of motion were 
presented in a matrix formulation in par. 5.2.3. They are given by 

and 

where the aerodynamic contribution to  the right-hand members is given by equations (64) 
and (79) as 



Equations (59) are six in nunlber and equations (71) are 3n-6 in number when n lumped 
masses are used to represen the airplane. The stabi!ity of the airplane is assessed by 
determining the manner in which the variables { Vp} depend on time. Thus, equations (59) 
and (71) must be integrated to determine (Vp} . That iniegration rcquires the kinematic 
relations given by equations (30), Le., 

6 = g cos el - r sin pl 

$, = p + (r s i n  + q cos tan 

P 

The above system of equations constitutes the equations of motion for a completely 
elastic airplane. Because the number of equations and unknowns is very iarge, it  is of the 
utmost importance, if at all possible, t o  reduce the number of equations and unknowns. 

One method of simplifying the problem is to use the residual flexibility method. Tile 
fEquency of the motion in many of the elastic degrees of freeiom is very larie. When these 
frequencies are an order of magnitude or more larger than the frequencies of tht; rigid-body 
motion, the two motions are only weakly coupled dynamically. However, the elastic 
deflections due to  those elastic degrces of freedom may strongly affect the rigid-body 
motion. The effect is brought about by quasi-static Sefiection of the airplane structure. The 
high frequency of the motion implies that the deflection is very nearly in phase with and in 
constant proportion to the loads produchig it. Thus, generalized inertial forces such as G& 
are very small. 

Residual flexibility is formulated by partitioning the generalized elastic detlections 
{ u } into two parts, as 

The generalized inertial forces associated with { u2} are set to zero. Equation (71) is 
partitioned as 
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and 

This formulation is discussed in considerable detail in app. A. There it is shown that 
equations (92) and (93) may be combined with equations (59) and (91) so as to elimirste 
the generaiized coordinates { u2) completely. The result is the set of equations governing 
the motion of the airplane's center of gravity as 

and dynamic-elastic equations 

where the matrix ( E R ]  is the residual flexibility matrix. The residual flexibility is given by 

It may be noted that rKlJ is the flexibility associated with the dynamically includcd 
generalized coordinates {ul} . Thus, { e ~ }  is the excess of flexibility of [el over the 
flexibility included in the dynamically included portion of the structural behavior. Thc term 
"residiul flexibility" is appropriate. 



The formulation presented by equations (6.208) and (6.209) has not been widely used. 
An alternate formulation used in some of the evaluations presented in this report has had 
prior use. Xie residual flexibility matrix is also given by 

e 
b 

(p21 r K 2 j - 1 p 2 1 T  - [eR1) (-pi { s p ~  .+ p\)= - FI 1lm3 [GI PI (94) 

-a1JCK,I1~@JT(- [ m P p /  + M) 
The alternate formulation follows by substituting equation (94) into equations (6.208) and 
(6.209). This particular formulation has the disadvantage that all free vibration mode shapes 
must be computed with high accuracy. That is not always practical. The result is a less 
accurate evaluation of the residual flexibility than is available with the form given by 
equation (6.203). 

If we introduce generalized coordinates qi with the fmt six of these set into 
correspondence with the elements of the matrix { rbp} , which appears in the matrix 
formulation of the equations of motion, then to  the degree of approx.imation appropriate to 
the small pertuibation equations of motion 

and 

Also, letting 

a T- . . , 4 y q , q  ..,4 
d V p }  -L  1 2 3 4’ 5 61 

the equations of motion given by equations (6.208) and (6.209) of app. A may be merged 
into a single matrix equation. This equation represents both rigid-body and internal motion 
for a residual-flexibility formulation and is given by 
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and 

By letting fKlJ vanish this set of equations reduces to the equations of motion for an 
equivalent elastic airplane. If all of the elastic degrees of freedom are included as 
dynamically participating, i.e., completely elastic airplane, then [ B i ]  = [I] and these 
equations continue to hold. It should be noted the thrust perturbation terms have been 
deleted from equations (6.208) and (6.209) of app. A. 

When the structural dynamics are neglected entirely,, only equations of motion 
governing airplane center-of-gravity motion remain. These are called the equatiom of 
motion of an equivalent elastic airplane. The resulting expressions are found by replacing 
[ e ~ j  by [el in equation (6.208) and setting terms involving U I  to zero. The result is 
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Some aspects of these various formulations require emphasis. The perturbation 
structural deflections for the equivalent elastic airplane gre precisely in phase with the 
externally applied loads. This is not the case in the complet(e1y elastic formulation or in the 
residual flexibility formulation. The maximum deflection, in general, does not occur at the 
instant of time when the external loads are a maximum. Also, the deflections may exceed 
the equivalent static-elastic deflections. This is of considerable importance if the structural 
motion is strongly coupled with the center-of-gravity motion of the airplane. When it is not, 
the problem becomes the concern of the flutter en,' *meer. 

It is of interest to note that. the terms on the right of equation (6.208) consisting of 

contain the stability derivatives that relate change in the forces and moments at the 
airplane's center of gravity to changes in the airplane's motion as a whole. They are 
equivalent to the stability derivatives appexing in equations (23). If the residual-flexibility 
matrix [CR] is set to zero, these terms contain the rigid airplane stability derivatives. If 
[CR] is set equal to [e] , the total airplane flexibility, so that equations (96) result, they are 
the stability derivatives for an equivalent elastic airplane. In that case the terms in equation 
(96) consisting of 

may be included into the equivalent elastic stability derivatives. This is sometimes referred 
to as having included inertial relief. The terminology stems from the practice of constructing 
equivalent elastic stability derhtives using static-elastic representations of the airplane. 
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6. STABILITY CRITERIA 

Static and dynamic stability criteria are presented artd discussed in this section. The 
problem of establishing handlingqualities criteria is beyond the scope of this investigation. 
However, physical interpretations of stability criteria and connections with previously 
established handling qualities are pointed out. 

6.1 Static Stability Criteria 

Static stability is defmed as the tendency of an airplane to develop forces or moments 
that directly oppose an instantaneous disturbance of a motion variable from a steady-state 
(Le., equilibrium or trim state) flight condition. For example, when the nose of an airplane 
is raised relative to  the flight path and, as a consequence, the airplane develops a nose-down 
moment, the airplane is said to be statically stable for such a disturbance. 

A static stability criterion is defmed as a rule by which steady-state flight conditions 
may be categorized as stable, neutrally stable, or unstable. 

In other contexts, the words “static stability criterion” have been used as a 
requirement for an arbitrary rinimum static margin. For example, thc military specification 
for flying qualities (ref. 10, par. 3.3.1.1) requirs a negative value of C, at all times, 
which implies a positive static margin. 

a 

In still another interpretation, the Civil Airworthiness Requirements (ref. 11, art. 
4b.15 1-1 55) associate stability criteria with stick-force versus speed behavior. 

The reasons for presecting and defining static stability criteria as given are as fallows. 
1.The definitions of stable, unstable, and neutrally stable given are clear so that 

2. These definitions lead directly to important aerodynamic derivatives and show how 
judgment and opinions are eEmir.ated as factors. 

they are related t o  static stability behavior. 

The reader will notice that these definitions are largely independent of notions of 
stability and stability criteria associated with control force or control surface displacement. 
Specifically, this report does not deal with: 

1. Stick-free stability; 
2. Stability as affected by the feel system including bob-weights; 
3. Stability augmentation systems in general. 

It is recognized that when control surfaces are allowed to float, or when springs or 
other devices are added, the longitudina. stability derivatives and associated control 
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characteristics can be significantly affected. Such effects are not discussed directly in this 
report. However, discussions of the effects of the derivatives do apply to those cases. 

b 

The criteria for static stability are summarized in table 1. These criteria are equally 
valid for rigid and elastic airplanes. It should be noted that they are presented as expressions 
of local slope behavior. For that reason they apply (as a iocal linearization) to situations 
where aerodynamic forces behave in a nonlinear manner. This is important because airplanes 
do behave in a nonlinerr fashion in many instances, for example in stall and pitch-up. 

It should also be noted that, although criteria of table 1 evolve from the definition of 
static stability criteria used here, they vary considerably in importance. For example, 
aMy/ aa(-Cma) is of much greater practical importance than aF,/ av  (-C ). This will 
be discussed in more detail in Sec. 7. Notice also from table 1 that under the adopted 
definition of static stabhity, the partials, aM,/ a u  (-Cmu) and 8My/av (-CIP ), do not 
belong. This implies that for static stability under the current definition, -the signs of Cnl 
and Cp are not iriportant. However, in the practical case these derivatives are important. 
An unusual feature of table 1 is that it includes moment derivatives with respect to 
rotational velocities. Such derivatives are normally associated with dynamic stability and not 
with static stability. The reason for their appearance must be found in the definition of 
stati, stability. The physical justification for including these moment derivatives in static 
stability considerations is that steady-state flight can actually involve constant rotagonal 
velociiies, 

YP 

U 

P 

The physical meanings of the criteria are stated below. 

I 

Criterion 

An airplane is statically stable for a forward speed disturbance, u, i f  aFx/au< 0 r -  (97) 

The physical meaning of this criterion is that as a consequence of an increase in 
forward speed, u (along the x-axis), a force must be generated that tends to oppose the 
increase in speed, 

- 
Criterion 

An airplane is statically stable for a side speed disturbance, v, if: aFy/av<O 
(98) 
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TABLE 1.- SUMMARY OFSTATICSTABILITY CRITENA 

Importance to handling f 
qualities 

Needed for stable phugoid. 
Not important if throttle 
response is good. 

Helps pilot in perceiving 
the sideslip. Allows 
skidding turns at low 
altitude (wings level). 

Reference IO 
MI L-F-8 7 8 5 

Par. 3.3.6 limits the 
phugoid divergence. No 
direct requirement. 

- 

Pars. 3.4.3 and 3.4.8 
interpreted to mean 
c < o  

yo 
I 

Primary means for flight 
path control. Significa:it 
to short period. Always 
satisifed before stall. 

Needed to maintain 
straight flight path. 

Par. 3.3.3* specifies 
short period requirements. 
No direct requirement. 

Pars. 3.4.3, 3.4.4, and 
3.4.5 interpreted to mean 
c, > o  

P 

Affects time history of 
pitch response. 

Affects time history of 
roll response. Affects 
Dutch roll damping. 

Affects damping of 
short period (increases 
pitch stiffness). 

Affects Dutch roll 
damping (iiicreases 
yaw stiffness). 

Improves speed control. 
Provides warning of 
inadvertent over or 
under speed. Affects 
stick-force behavior. 

Par. 3.3.1 interpreted 
t o m e a n C  < 0 

Par. 3.4.1 * specifies Dutch 
roll requirement. Par. 3.4.16 
specifies roll performance. 

Par. 3.3.5* specifies short 
period requirements. No 
direct requirements. 

Par. 3.4.1 * specifies Dutch 
roll requirements N o  
direct requirements. 

No direct requirement, 
but par. 3.3.3 implies that 
violation is allowed 
transonically. 

ma 

Warns pilot of existence 
of sideslip. Allows 
emergelicy roll control. 
Affects Dutch roll. 

Pars. 3.4.3. 3.4.6, and 
3.4.7 interpreted to mean 

*MlL-F-8785 recognize5 auginentation-oti and -off c a w .  This document deals only with 
unaugmen ted cases. 
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TABLE 1.- SUMMARY OF STATIC STABILITY CRITERIA (CONCL UDKD) 
c 

General form of 
static stability 
criterion 

< O  
*x - 
au 

aFY 

aFz 

a% 
a0 

aa 

- < o  av 

- < o  aw 

> O  - 

- % < o  

Approximate or 
alternate form 

I- 

b 

Reference 44 
FAR - Part 2.5 

1 

C <Oor 

CDu > O  

(No thrust effect) 

No dlrect requirement 

C" P O  
P 

Cma<O 

~~ 

c < o  Par. 25.177(c) interpreted 
(No thrust effect) I to mean cya<o 

YP 

Par. 25.17(a) interpreted 
tomeanC,  >O 

P 
No direct requirement but 
Pars. 25.173 & 25.175 
interpreted to mean C < C  m a  

CLa >o I I No direct requirement 

c < o  
"r 

No direct requirement, but 

short periods t o  be heaviiy 
damped 

' Par. 25.181 requires all 

I I 

c 40 I 
' P  

~ 

No direct requirement, but 
Par. 25.181 requires a11 
short periods to  be heavily 
damped 

Par. 35.177 (b) interpreted 
to mean Cp < 0 

P 

Par. 25.175 (c) implies that 
violation is not allowed 

Cmu 

Reference 1 I 
British CAR, section I? 

No direct requirement 

Par. 7.3 interpreted to 
meanC < O  

yo 

No direct requirement 

Par. 7.7, interpreted to  
meanC > O  

Par. 2.1 requires 

"0 

dCm< +.OS 
dCL 

No direct requirement 

No direct requirement, but 
Par. 8.1 requires all short 
periods to be heavily 
damped 

N o  direct requirement, but 
Par. 8.1 requires all short 
short periods to be heavily 
damped 

Par. 31.1 implies that 
violation is not allowed 

Par. 7.1 interpreted to  
mean Cp < 0 

P 



The physical meaning of this criterion is that as a consequence of a side speed 
disturbance, v (along the y-axis), a force is generated 'that tends to oppose v. The 
approximation, v= p Vcl will be used. 

Criterion 

An airplane is statically (longitudinally) stable for an angle-of-attack disturbance,& , 
i f  i3My/W<0 (101) 

, 

Criterion 

An airplane is statically stable for a vertical speed disturbance, w, if: aF,/aw < 0 
(991 I 

The physical meaning of this criterion is that as a conscquence of a positive velocity 
disturbance, w (along the z-axis), a force is generated that tends to oppose w. The 
approximation w = willbe used. v c 1  

- 
Criterion 

An airplane is statically (directionally) stable for a sideslip disturbance, P ,  if: 
aM,/ap > 0 ( 1 CO) 

- 

The physical meaning of this criterion is that as a result of an angle of sideslip 
disturbance, p , the airplane weathercocks into the new relative wind. 

The physical significance of this criterion is that as a result of an angle-of-attack 
disturbance, Q! , the airplane weathercocks into the new relative wind. 



- 
Criterion 3 

t 

I I ( 102) 
Ari airplane is statically stable for a disturbance in roll velocity, p, if: aM,/ap< 0 

- 
.- - 

Cri t erim 

An airplane is statically stable for a disturbance ir, yawing velocity r, if: 
8M,/ar 0 (104) 

The physical meaning of this criterion is that as a result of an increase in rolling 
velocity, p, a moment is generated that tends to oppose the increase in rolling velocity. 

I -. 
~ r i  t erioli I 
An airplane is statically stable for a disturbance in pitching velocity q, if: 
aMy/aqc 0 (103) I 

The physical meaning of this criterion is that as a result of an increase in pitching 
velocity, q, a momznt is generated that tends to oppose the increase in pitching velocity. 

?'ne physical meaning of this criterion is that as a result of an increase in yawing 
velocity, r, a moment is generated that tends to oppose the increase in yawing velccity. 

Under the definition of static stability used in this report, the partial differential 
aMy/au (-Cmu) does not qualify as a static stability parameter. However, as will be 
shown, C, has important consequences to longitudinal stability from the viewpoint of the 
pilot. In addition, in much of the literature, this parameter is identified with longitudinal 
stability. 
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It is noted that a positive sign of 8My/au means physically that as a result of an 
increase in forward speed, the airplane noses up, which would tend to slow the airpldne 
down because of the resulting drag increase plus the increase in glavitational pull a'.ong the 
body x-axis. Therefore, an airplane would have stable pitch .moment versus speed behavior 

Under the definition of static siability used in tlus.report, the partia: differentia: 
aM,/av ( - Cap) does not qualify as a static stability parameter. Nevertheless, this 
derivative has an important effect on stability and on handling qualities. 

if: aNly/au,0. 

The physical significance of this is that for a positive sideslip disturbance (nose left) the 
ahplane tends to roll away from the disturbance, ie., roll to thk left. If the airplane rolls 
about its stability x-axis as a result of ths ,  it is easily seen that this tends to diminish the 
effective sideslip angle. Foi. this reason, some investigators identify C i  as a lateral stsbility 
parameter even though strictly speaking the derivative should not be considered as such. 

P 

6.2 Dynamic C;ahiiity Criteria 

Dynamic stability is def ied as the tendency of the amplitudes of the perturbed 
,-motion of an airplane to decrease to zero or to values corres;?onding to s new steady state at 
some time after the disturbance has stopped. For example, consider an airplane disturbed in 
pitch from a steady-state flight condition. If the resulting perturbed motion is damped out 
after some time, the airplane's motion becomes steady. If the new state is not significantly 
different from tne original one, the airplaile is called dynamically stable. The subject of 
dynamic stability, then, deals with the behavior of the perturbet motion of an airplane 
about some steady-state flight path. 

A dynamic stability criterion is defined as a rule oy whi.?h perturbell motions arc 
categorized as stable, neutrally stable, or unstable. 

In other contexts a dynamic stability criterion has L e n  interpreted as a requirement 
for specific response characteristics or for meeting specific fkequency-damping relations. 
This type of interpretation is embodied in the military specification for flying qualities (ref. 
10) and its proposed revision as documented in ref. 12. There are important connections 
between dynamic stability criteria (viewed as mathematical statements of stability) and the 
handling-qualitks criteria of refs. 10 and 12. Therefore, where the need for physical 



interpretation of the stability criteria is established in this report, the connections with 
handling qualities are pointed out. 

e b 

' Dynamic stability criteria are established covering the linear and nonlinear equations of 
motion of an airplane. These criteria apply to rigid, equivalent elastic, and completely elastic 
descriptions of airplanes provided the corresponding equations of motion are written in the 
foxm pertinent to the criteria. Table 2 presents a summary of dynamic stability criteria and 
their relationships to  the various forms of the equations of motion. The arrangement of the 
equations of motion into the requircd forms was discussed in Sec. 5. Those combinations of 
criteria and equations which are most commonly used in airplane stability analysis are 
identified in table 2 4 t h  heavy lines. 

6.2.1 Characteristic equation methods- When airplane dynamic behavior can be 
approximated by assuming that motion perturbations relative to a steady state are small, it 
is possible to reduce the equations of motion to a set of h e a r ,  second-order, ordinaiy 
differential equations vith constant coefficients. It is shown in app. A that in such a case 
these equations can be reduced to the following general form: 

{g} = [Al{x) 

Taking the Laplace transformatian and rearranging equation (105), .it follows that 

where: 
1. S = u f ju = complex frequency variabic 
2. The subscripts s and t are used to distinguish between the functional relationships 

(xs) and W t )  

The quantities Uj and w j  are, respectively, the real and th:: imaginary parts of the roots 
sj of the characteristic equation: 
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Equation (107) follows from the condition that nontrivinl solutions ( {  Xs(S)} f 0) 
to equation (106) for { Xt(to+)} = 0 are allowed only if equation (107) is satisfied. 

.- 

Criterion 

If the airplane equations of motion are linear and autonomous, then the airplane 
behavior is said to be: 

0 stable, if the real parts of the roots of the characteristic equation are all negative, 

__. - 
I _ _  . -. 

The following dynamic stability criterion can then be f4rmulated. 

0 neutrally stable, if there are one or more roots of the characteristic equation with 
zero real parts and the remaining roots all hwe negative real parts, and 

0 unstable, if there is at least one root of the characteristic equation with a positive 
real part. 

(1 08) 

In most of the standard literature (refs. 4 and 13 through 17), dynamic stability of 
airplanes is treated from this viewpoint. 

The possibility exists for A in equation (105) to have elements thai ale known 
functions of time. This occurs- in steady climbs and dives when dynamic pressure is allowed 
to vary. In such a case, equation (105) is still linear but is called nonautonomous, and the 
equations assume the form: 

bq= [ W l  {XI (109) 

For this type of equation, no sinple stability theory is known. (The more complicated 
stability theory of Lyapunov, which is discussed in par. 6.2.4 and in app. A, could be used.) 
However, the writers of this report feel that equation (1 09) is valid, although no proof has 
been found justifying the approach. The approach consists of applying the characteristic 
equation method to equation ( 109) with the following modifications. The characteristic 
equation considered is: 
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The fo!lowing dynamic stability criterion is postulated. 

I 

. - 
Criterion 

When the real parts of the roots of the characteristic equation, equation (1 lo), are 
negative for t = 0, as well as for t = t l ,  where t l  is the practical limit of the time 
interval considered, then the airplane is stable in that time ihterval. 

(1 11) 

As stated, this criterion needs proof. The proof may lie in defining the quantity E as 
equal to the total kinetic energy of the airplane in the perturbed state and also defining = 
dE/dt. In that case, E takcs the place of the Lyapunov function. If criterion (1 11) is 
satisfied it can be interpreted to mean, according to Lyapunov's thecrem 1, that 6 is 
negative at the beginning and end of the time interval. 

Whether or not in a practical case the dynamic stability criteria (1 08) are satisfied can 
be determined by solving directly for the roots of the characteristic equation. A technique 
for determining stability behavior from the characteristic equation without solving for the 
roots is known as Routh's criterion. The reader is cautioned not to confuse this with what is 
sometimes called the Routh-Hurwitz criterion. Routh'and .Hu&itz both developed similar, 
but not identical, criteria. However, from the standpoint of calculations Routh's is the more 
direct approach and is discussed in app. A. 

There are many techniques used in systems, analyses, and synthesis techriiques (control 
theory) that may be applied to the perturbed airplane equations of motion of the form of 
equation (105). Some of the more widely used, for example Bode diagrams, Nichol's charts, 
the Nyquist criterion, root locus plots, phase trajectories, etc., can be found in the literature 
(for example, refs. 18 through 22). Most of these techniques were generated for special 
types of problems and their use is restricted because of limitations imposed by the number 
of assumptions and/or the effort required in their application. 

Applications of the characteristic equations method are limited to linear differential 
equations of motion; they cannot be used where significant nonlinearities are encountered. 
However, when the equations of motion can be linearized, the characteristic equations 
method representcd by criterion (108) is a most efficient technique for determining airplane 
stability behavior. In addition to determining the stability behavior, the roots of the 
Characteristic equat:g2iis can be used for other analyses. For example, the frequency and 
damping characteristics, imaginary and real parts of the roots, are used t.,censively in 
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handlingqualities analyses and stability augmentation systenis design. Examples of such uses 
may be found in refs. 4,10, and 12 through 17. 

6.2.2 Time histories.- When the equations of motibn of an airplane cannot be 
linearized, it has been common practice to base judgment of stability behavior on 
observation of traces of time history solutions of the equctions of motion. 

The resulting traces are judged to determine stability. 

Criterion 

When the motions of an airplane following a disturbance from steddy-state flight are 
determined by a time history, the behavior is: 

-. 

0 stable, if Lo motions remain in proximity to the steady state, 

0 neutrally stable, if the motions are undamped and oscillatory about some steady 
state, 

0 unstable, if the notions diverge from the steady state either linearly, exponentially, 
oscillatorily, or in any combination. 

(1 12) 

It should be recognized, however, that for nonlinear equations of motion there may be 
combinations of locally stable, neutrally stable, or unstable regimes. An example of what 
can be encountered is airplane pitchup above a certain angle of attack. If motions were 
investigated for small angles (caused by a small initial disturbance), stable motion would be 
observed. However, if a large disturbance were introduced which would force the angle of 
attack above the pitchup angle, divergence wcxild occur. It is easily realized that one stable 
case does not guarantee airplane stability throughout its operating limits. Practically, this 
problem is resolved by running several time histories with various disturbance magnitudes. 

6.2.3 Energy decay methods.- A relatively new and unknown type of stability 
analysis is the energy d::cay method, which is discussed in refs. 23 and 24. The fundamental 
idea behind energy decay methods is that in dynamically stable systems, energy is being 
dissipated. In the case of linear differential equations with constant coefficients, it is 
possible to show the inverse, Le., that if energy is being dissipated the corresponding system 
is dynamically stable. Extension to nonlinear equations of motion can be justified by 
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applying the Lyapunov stability theory discussed in app. A. The approach can be stated in 
the following steps. 

1. Derive expressions for the total perturbed energy, E, of the airplane. 
2. From (1) derive the AE required to  make the airplgne appear to be a conservative 

3. Examine the sign of AE. 
system in the f is t  half cycle of oscillation, i.e., neutrally stable. 

The following dynamic stability critericin can then be formulated. 

Criterion 

If: AE>O, the airplane is stable. 

AE = 0, the airplane is neutrally stable or  undisturted. 

AE<O, the airplanz is stable. 
(1 13) 

A theoret id  discussion on how to apply this criterion is given in ref. 24. However, 
because of algebraic complexities it is not considered pnctical to use the above criterion in 
cases involving nonlinear equations of motion. For these'cases, Hahn (ref. 25) suggests an 
energy decay method based on an idea by Lebedev. This idea was further developed by 
Roskam (ref. 23). There, stability was connected with energy decay through the parameter: 

- . - - . __  

It3 T dt 

f 2  T dt 

2 F =  

1 

where T is the perturbed kinetic energy, t l  is the beginning of a time interval during which 
the motion of the a i r p h e  is being studied, t3 is tke end of that time interval, and t2 is the 
midpoint of that time interval. The criterion for stability in this case follows. 

- 
Criterion 

I f  
.- ___~_______I__._I__.-. -.--I__ ~ ~ . 

F< i , the airplane is stable. 

F = 1, the airplane is neutrally stable. 

F 7 1, the c.i.rplane is unstable. 
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It is shown in ref. 23 that the condition F< 1, indicating stability, is satisfied in the 
case of stable, h e a r ,  small perturbation equations of motion. 

0 
I 

The advantage of the latter criterion is that it applies to nonlinear equations of motion. 
A disadvantage is that either considerable numerical work or a computer program is 
required. 

Because energy decay methods have not been widely applied, their limitations, 
advantages, and disadvantages have not been assessed, although it is felt that there should be 
few limitations because of the general nature of the approach. However, for linear, 
autonomous, small perturbation equations of motion, this approach will probably prove to 
be less efficient than the characteristic equations method. 

6.2.4 LyaRi‘iiov’s method.- The time history method was suggested as a way to 
determine the stability behavior of an airpIane when the equations of motion are nonlinear. 
However, with the time history method it is necessary to solve the equations of motion. 
Lyapunov has devised a stability theory for both linear and nonlinsar differential equations 
of perturbed motion that obviates the necessity to solve these equations. 

Lyapunov’s stability theory has received little attention from airplane stability and 
control engineers. For this reason, an introduction to this theory as well as some pertinent 
definitions and theorems are given in app. A. The potential applications of the analysis 
techniques devised by Lyapunov, and by others who have followed his approach, are quite 
numerous becuase of the genera!ity of the approach. Rather than solving any particular 
problem, Lyapunov realized that the stability of dynamic systems (including moving bodies) 
was a problem of studying the behavior of differential equations in general. He devised two 
classes of approach, one for equations whose solutions are known functions of time and 
another for equations of motion written in the perturbation form. The first approach, using 
known solutions, is similar to the use of the stability criterion for time histories. 

The second approach, called the “direct” or “second” method of Lyapunov, requires 
choosing a “Lyapunov function” and relating the behavior of this function to the behavior 
af the differential equations of motion. Owing to a theorem attributed to Zubov, 
Lyapunov’s direct method beccjmes a particularly attractive approach to the problem of 
nonlinear airplane stability behavior. Because of its similarity to the more familiar 
characteristic equation approach it is felt that Zubov’s theorem should appear as a logical 
extension of that approach. In fact, as showri in app. A, it is possible to prove criterion 
(108) (stable roots for characteristic equations) using Zubov’s theorem for linear, 
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autonomous equations. However, the appfication of Zubov’s theorem wouId be more useful 
for nonlinear equations. 

The large perturbation equations of motion of an airplane can be written in the form: 

{$} = [F  ({x}, t)l {x} (116) 

Also, nonlinear, small perturbation equations with nonlir ’ar, aerodynamic, cross-coupling 
terms, can be written in this form. Before stating the stability criterion for these nonlinear 
equations, however, some definitions are required. First, the equation 

will be called the “quasi-characteristic equation” where { XR} and tR are .,:fi-.ied as values 
belonging to a representative set of x and t. Next, by a “representative set,” the following is 
meant. For given initial disturbances, the solutions to the equations of motion (1  16) yield a 
time sequence of values of the motion variables { x} . In most practical cases the engineer 
will have an idea of the practical limits of the perturbed motions the airplane can 
experience. In other words, the engineer can make a reasonable estimate of the “cylindrical 
neighborhood” surrounding the time axis, within whkh the motion takes place. Choosing 
discrete values of {x} and t, called {XR} and tR, within practical limits related to the 
steady-state flight condition in accordance with these ideas, generates a representative set of 
{ x 1 and t. Analogous to this choice of a representative set is the selection of combinations 
of Mach numbers, dynamic pressures, angles of attack and angles of sideslip for wliich wind 
tunnel data is to be obtained oi- stability is to be assessed In the usual analytical approach. 

Finally, the eigenvalues, A , that will satisfy equation (1 17) are called the eigenvalues of 
the quasi-characteristic equation. 

Using the above definitions, the application of Zubov’s theorem as a dynamic stability 
criterion is postulated as follows. 

. I  

Criterion 

If the eigenvalues of the quasi-characteristic equation are nonpositive (s  0) for each 
{XR} and tK in a representative set 3f {x} and t, then the airplane is stable. 



Unlike the other stability criteria presented in this section, this criterion has no neutral 
or unstable counterparts. It is shown in app. A that Lyapunov’s direct method has certain 
limitations and that the existence of positive eigenvaliks does not necessarily imply 
instability. In other words, criterion (1 18) is necessary but not sufficient. 

It is emphasized that the use of Zubov’s theorem as a basis for determining stability has 
limitations and disadvantages. Particularly important is the consideration that proving 
Zubov’s theorem requires the use of a particular Lyapunov function, which may lead to very 
rough stability analyses. Another disadvantage is loss of physical fee! for the problem until 
familiarity with and understanding of the direct method are achieved. Where the engineer 
can visualize the predicted motions, the time history approach has a distinct advantage. 

The particular method presented here, using Zubov’s theorem, has no restrictions on 
the types of perturbation equations to which it can be applied. However, the criterion only 
pertains to dynamic stability and, as stated above, there are no neutral or unstable 
counterparts. Also, it will not always predict stability for stable airplanes. This approach has 
not been sufficiently explored to adequately assess its value. 
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7. METHODS FOR DETERNIINING STABILITY DERIVATIVES 
e b 

7.1 General Considerations 

Aerodynamic derivatives are used to relate changes in the aerodynamic forces and 
moments to changes in the airplane’s attitude, motion, and shape due to elastic deformatior, 
and control deflections. Those derivatives associa ted with airplane translation and rota tion 
are generally called the airplane’s stability derivatives. Here, those associated with elastic 
deformation are also included in that classification. 

The stability derivatives must be estimated in order t o  evaluate the stabiiity 
characteristics of an airplane configuration. Several methods for obtaining estimates are 
usually used in combination. These methods divide roughly into three categories: ( I )  
estimates based -on numerical solutions to the equations of fluid dynamics, (2) estimates 
based on semi-empirical handbook data, and (3) estimates based on experimental wind 
ixnnel data. The objective here is to describe the best available analytical techniques. These 
techniques are then evaluated by comparing computed values for stability derivatives with 
their values measured in wind tunnel anJ flight tests and by carefully investigating the 
approximations involved in the theoretical and handbook methods. 

There are 24 stability derivatives associated with the translational and rotational 
degrees of freedom that are usually regarded to have some importance to  the stabiIity 
characteristicb of large, flexible airplanes. They are listed in table 3 along with an evaluation 
of their relative importance. The degi-:(: of confidence that can be placed on their predicted 
values when wind tunnel measurements are used in conjunction with handbook and 
theoretical techniques is also shown. This table reflects a consensus existing among 
experienced stability and control engineers at the time of writing. It illustrates the need for 
improved techniques for estimating lateral-directional stability derivatives. 

The advent of large digital computers has greatly enhanced the theoretical approach to 
estimating stability derivatives. One conclusion of tIu. study is that digital computer 
programs based on solutions to the equations of fluid dynamics constitute the best method 
for estimating stability derivatives, These programs can incorporate empirical corrections in 
somewhat the same manner as the handbook methods. They can also use data from wind 
tunnel pressure models and the results of flow visualization studies as empirical corrections 
in a way that is inipossible in the current handbook methods. 

The computer programs genera!ly use influence coefficient theory. Aemdynamic 
influence coefficients give the change in pressure at a sinnll region of the airplane’s surfice 
due to a change in surface incidence at that and any other small region of the airplane’s 
surface. Structurd influence coefficienth give the change in incidence and position a t  a small 
region due to a change in force applied to  that and any other region. 
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TABLE 3.- RELATIVE IMPORTANCE AND PREDICTION ACCURACY OF 
STABILITY D E N  VATrVES b b 

hngitudina! 
Relative 

importance 

-- 

Primary 

Primary 

Primarv 

. Primary 

Primary 

Primary 

Secondary 

Secondary 

Secondary 

Secondary 

Minor 

Minor 

Estimated 
accuracv" 

Good 

Good 

Good 

Good 

Fair 

Good 

Good 

Good 

Poor 

Good 

Poor 

Fair 

! 

I 

Derivative 

reral-directional 
Relative 

imDor tance 

Primary 

Primary 

Primary 

Primary 

Primary 

Primary 

Prin.a. y 

Secondary 

Secondary 

Secondary 

Minor 

Minor 

Estimated 
accuracy* 

Good 

Good 

Good 

Fair 

Poor 

Poor 

Good 

Poor 

Poor 

Fair 

Poor 

Poor 

*Estimated prediction accuracy assumes use of theoretical, handbook, and 
wind tunnel data. 
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The influence coefficients can be used in a formulition of the stability derivatives for a 
rigid airplane, an equivalent clastic airplane, or for the elastic degrees of freedcin ot' an 
airplane represented as completely elastic. The aerodynamic, influence coefficients are based 
on either lifting sarface theory or lifting line theory, although lifting surface theory is thc 
more general and is not restricted in applicatio2 to high aspect ratio wings :is is lifting line 
theory. 

b 

As noted, th4 aerodynamic influence coefficients can either be combined with the 
structural influence coefficients to formulate equivalent elastic stability derivatives ur be 
used by themselves to  formulate rigid stability derivatives. The ratio of these two stability 
derivatives or the difference between them can then be used to correct handbook estimates 
of rigid stability derivatives for the effects of elasticity. These procedures can also be used t 3 

correct derivatives measured in the wind tunnel using rigid or nearly rigid models. It 
represents the best available method for correcting rigid stabiii.y derivatives. 

The most widely known source of information for estimating stPbility derivatives is the 
USAF Stability and Control Handbook (ref. 6). It was the primary handbook source used in 
the evaluation. This handbook, 5s well as all others, utilizes empirical and theol*etical d;lta 
determined over a range of certain parameters associated with airplane configilration, e.g., 
aspect ratio and tail volume, and with the airplane reference flight condition. The stability 
derivatives of a particular airplane are found by interpolation of the handbook data. 

A serious deficiency in the handboclk is that the effects cf structuial flexibility are 
either not accounted for or are accdunted for only through coarse approximations. The 
handbook methods are not sufficient in themselves to treat flexible, low aspect ratio wing 
and tail surfaces. 

Tables 4 and 5 summarize the results of the evaluation of methods for calculating 
stability derivatives. The estimates based OE ..ling line theory ,', :f. 26) contain empirical 
corrections and were made usilig a computer program that is typical of those available 
throughout the industry. Those based on lifting surface thPory (ref. 27), however, wcre 
made without empirical corrections. It is iniportant to cote this because the lifting surface 
technique used in this evaluation was developed for wing optimization studies. Leading edge 
suction is poorly represented in this program; hence, induced drag and yaw due to roll are 
poorly estimated. The program will only represent an airplane in symmetric flight or a flat 
airplane in roll. In addition, a first approximation to derivativcs that involve unsteady 
aerodynamics is ilot an immediately accessible feature. Ail of these aspects reflect against 
the lifting surface estimates, although. they may bt: overcome in future programs. 

TpYes 6, 7, and 8 summarize the limits of applicability 01 the techniques for obtaining 
stability derivative estinia tes. Tatits 6 and 7 show the applicability of lechniques using 
aerodynamic influence cocfficienis-table 6 concerns techniques based on lifting surface 
theory and table 7 those basad on liftir,g :he theory. The applicability of handbook 
methods is shown irn tablz 8. 
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TABLE-4. - LONG~TUDINAL STABILITY DERIVATI YES 

.Lifting 
surface 
(computer: 

Lifting 
line 
(computet) 

Derivative I I $gid,and I Rigidand 
I 1 equiv.elas. I equiv. elas. 

Handbook 

Rigid only 

Handbook i- 
lifting 
surface -1 Equiv. elas. 

I I I 

G (good)-method compares favorably with experiment, with some exceptions. 
F (fair)-method compares favorably with experiment, with exception of some 

P (poor)-method does not compare favorably with experiment. 
[BLANK] ;-not calculated. 

M, ALE, etc. 
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TABLE 5.- LATERAL-DIRECTIONAL STABILITY DERIVATIVES 

~ ~- ~- ~~ ~- ~ 

G (good)-method compares favmably with experiment, with some exceptions. 
F (fair)-method compares favorably with experiment? with exception of some 

P (poor)-method does not compare favorablj with experiment. 
[BLANK] -not calculated. 

M,ALE, etc. 
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TABLE 6.- APPLICABILITY AND LIMITATIONS OF LIFTIIVC SURFACE THEORY 

L 
Flow 

Can p ressib le 
Steady 
Quasi-stead y 
Unsteady 
Viscous 

i Separated 

r-calclllate various flow conditions I Capability exists or can be 
developed from existing theory. 

N Not applicable to first-order 
approximations of this derivative. 

Capability may exist, but further 
development is required. 

Blank No capability exists. 
? 
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TABLE 7.- APPLICABILITY AND LIhlITATIONS OF LIFIING LINE THEORY 

Flow 

Compressible 
Steady 
Quasi-stead y 
Unsteady 
Viscous 
Separated 

Ability to calculate various flow conditions I 
Capability 

Yes 
Yes 
Yes 
Yes 
No 
No 

0 Capability exists or can be 
developed from existing theory. 
Not applicable to  first order 

approximations of this derivative. 

Capability may exist, but further 
development is required. 

N 

Blank No capability exists. 
? 
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TABLE 8.-RPPLICABILITY AND LhUITA TIONS OF THE HANDBOOK METHODS 

1 Ability to calculate various f low conditions- 
Flow 

Compressible 
Steady 
Quasi-steady 
Unsteady 
Viscous 
Separated 

Capability 

Yes 
Yes 
Yes 
Yes 
No 
No 

- 
Thick 
b.pY 

W-B-H t 
vert. tail 

Wing-tail 
dihedral 

Capability exists or can be 
developed from existing theory. 
Not applicable to first order 
approximations of this 
derivative. 

Blank No capability exists. 

N 

? Capability may exist, but 
futther development is required. 
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IJra p-eference for lifting surface theory expressed in this report is heavily supported 
by the results presented in these tables. Three classes of capability are shown. That which 
exists or can be acq.Jked readily is shown by a dot. That which is within the fundanierittll 
limitations of the technique is shown by a question mark. A blank space indicates capability 
which exceeds fundamental limitations of the technique. 

.. . 
Estimation techniques using lifting surface theory clearly have the greatest basic 

potential. When this theoretical capability is coupled with empirical cwrections to the 
lifting surface technique, the preference is further justified. Empirical correction methods 
may be utilized in the aerodynamic influence coefficient methods in a very efficient and 
&anal manner. This feature has been incorporated into existing compii ter programs based 
QIL lifting line theory but is currently in only a rudimentary stage of development in existing 
programs based on lifting surface theory. 

?Jre formu!ation of stability derivatives in terms of aerodynamic influence coefficients 
irrvoIves the thsory of small perturbation inviscid fluid flow. A general formulation of the 
aerodynamics of stability . .  and control based on a mathematical theory of fluid dynamics 
appears nowhere in the literature. Many specialized investigations may be found, and 
examples appear in the works by Miles (ref. 28), Chester (ref. 29), Ward (ref. 30), and Van 
Dyke (ref. 51). The only general development found in the literature is that by Bryson (ref. 
3.21, which applies to slender rigid bodies. However, Bryson’s development is valid for 
slender bodies only, to the exclusion of wing-body combinations with aspect ratios larger 
ohm 2 QIT ?, since his formulation is based on the constant-density, cross-flow assumption. 

- 

It is also important . .  to note that the assumptions applied to the conservation laws of 
ref. 33 to develop the inviscid fluid dynamic equations do not apply to hypersoiiic flow. 
Precise limits of applicability cannot he placed upon these equations, because the onset of 
hypersonic flow depends upon the shape of :he body (ref. 34). Htpersonic flow 
characteristics are observed at M, = 3.0 on some blunt bodies, but not until hl, = 10.0 on 
some thin bodies. For supersonic je t-type airp!anes, which are relatively slender, important 
hypersonic flow effects do not occur below M, = 5.0. Therefore, the flow equations used in 
this report are assumed valid up to that speed for such slender configurations. 

A forrrulation of the stability derivatives in terms of lifting surface aerodynamic 
influence coefficients is presented in par. 7.2. The basis for that formulation is described in 
physical terms in par. 7.2 and is developed in detail in app. B. Summarizing, the pertinent 
equations for the stability derivatives are written in terms of five aerodynamic matrices, 
[A1],  [A21, [A3j ,  [Aq] ,  and [A5],  which are derived from the equations of fluid 
dynainics as described briefly in par. 7.2 and in detail in app. B. Their precise form depends, 
‘I pan, on the particular aerodynamic influence coefficient theory chosen. The equations in 
:m ; ’ the aerodynamic matrices are as follows. 
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The derivatives contained in the boxes above are lateral-directional; the rest arc 
longitudinal. The aerodynamic influence coefficients cannot be used to compute drag due to 
viscous forces. However, those drag derivatives which are for the most part due to 
nonviscous forces can be computed. The values of CD,, CD,, and CD can be computed 
for use in obtaining elastic corrections to  rigid values obtained separateyy from a computcr 
program system. 

Equations ( 1  19) and ( 120) contain certain approximations of the aerodynamic forces 
in order to be consistent with the small perturbation equations of motion. The 
lateral-directional unsteady derivatives C y j  , C l j  , C contain the most severe approxi- 
mations and assumptions. The longitudinal steady derivatives ay*varing in equation ( 1  19) 
contain the least severe approximations. Besides those assumptions previously listed in 
deriving the small perturbation equations of motion, assumptions D1 1 and .48 ,art: 

4 

0 0  
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applied in calculating the longitudinal stability derivatives. The evaluation of the 
lateral-directional stability derivatives depends upon A 12 . Unsteady stability derivatikes 
are based on approximation A9 in lieu of A8 . 0 0 0  

Additional stability derivatives are required which correspond to aerodynamic forces 
generated by the dynamic-elastic motion, i.e., motion in the elastic degrees of freedom. 
Stability derivatives corresponding to the ith elastic degree of freedom are 

I- 

C& 1 

l"yrl 
C% 

m.- i 
C 

c 
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where { Q i } is the ith elastic free vibration modal shape. 

The derivatives appearing in boxes are lateral-directional and are nonzero if i 
corresponds to an antisymmetric mode shape and zero if i corresponds to a symnwtricnl 
mode shape. The remaining derivatives are longitudinal and are zero or nonzero conversely 
with tile lateral-directional derivatives. 

Stability derivatives for changes in generalized aerodynamic forces in the elastic dtgrecs 
of freedom due to changes in the motion velocity components are given by 

T 

Stability derivatives for changes in generalized aerod.{naniic forces due to rates of 
change in incidence and sideslip are: 

m 

(125) 

Stability derivatives rrlating changes in generalized aerodynamic forces to changes in the. 
generalized coordinates and velocities in the elastic degrees of freedom are: 
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Stability derivatives relating changes in generalized aerodynamic forces to changes in 
the generalized accelerations in the elastic degrees of freedom are: 

The derivatives in equation (128) may be computed on the basis of aerodynamic 
influence coefficients for reduced frequencies that are small and for symmetrical mode 
shapes. 

In summary, equations (1 19) through (128) contain all the stability derivatives for a 
symmetric, elastic airplane. If the appropriate aerodynamic influence coefficients are 
available, then-all of the stability derivatives may be computed. 

The stability derivatives computed on .the basis of aerodynamic influence coefficients 
represent a valid first-order approximation for the pressure coefficient of an inviscid, 
isentropic fluid flow (ref. 30). In addition, it is assumed that the uiisteady effects are due to 
motion of sufficiently slow variation that the reduced frequency is of zero order of 
magnitude (ref. 28). 

7.2 Theoretical Methods 

Stability derivatives relate changes in the aerodynamic forces and moments on an 
airplane to  charges in airplane attitude and motion. This section describes a basis for 
computing the stability derivatives from the mathematical theory of fluid flow. The 
aerodynamic influence method is used in the development. Results sought are the 
aerodynamic matrices [ A , ] ,  [A2], [A3],  [A4], and [A5] ,  which appear in the matrix 
formulations of the equations of motion appearing in Sec. 5 .  The detailed developments are 
contained in app. 13. This section merely summarizes and discusscs the physical aspects of 
the problcm, but proceeds from rather fundamental concepts. 
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.- Jplane in flight may be looked upon as a solid body in motion in a fluid. Its 
motion disturbs a portion of the atmosphere. However, its shape ind motion are usually 
such that the pertuxbation of the disturbed fluid is very glight. In fact, thi: magnitude of 
perturbation velocity of the fluid, when divided by the magnitude of the airplane’s velocity, is 
of order of magnitude zero except in the vicinity of stagnation points. Also, the viscosity of 
the atmosphere is sa small that viscous forces are negligible in compal-ison with dynamic 
forces in the fluid, except in a thin layer of flow at the airplane’s surface and in its wake. 
These conditions allow small perturbation invriscid flow theory to  provide an accurate 
theoretical representation of the flow about an airplane. 

As showr! in app. B, as well as in most textbooks on aerodynamics, in the theory of 
small perturbation inviscid flow the principles of imservation of mass and momentum and 
tile equation of state are reduced to a single linear partial differential equation. This flow 
equation contains a single dependent variable, perturbation velocity potential 8 . The flow 
equation is written in terms of a fluid axis system whose coordinates, along with h e ,  are 
the independent variables in the flow equation. 

- -..& 
The velocity of the fluid is given by V = U(i +V 8 ). This is the velocity of the fluid 

particles measured relative to the fluid axis system and U is the component, along the x-axis 
of the fluid axis system, of the velocity of the airplane relative to fixed space. 

The perturbation velocity potential must be such that it satisfies the flow equation and 
such that the velocity field qx,y,z, t)  does not produce flow through the surface of t,ie 
airplane. This last requirement is called a boundary condition. An additional requirement of 
the perturbation velocity potential fdlows from the vortex Iaws ‘of Helmholtz. The wake 
behind the airplane must be such that they are satisfied. However, the pressure in the fluid 
calculated from Bernoulli’s equation must be continuous xross the wake. Discontiswities in 
the pressure field in the fluid can only exist across solid I xl-ies. This is all that will be said 
about the flow problem here; for a more detailed descripti:,n, the reader may refer to app. 
B. The special form appropriate to the questio,i of aerodynamic forces in stability and 
control considerations will now be introduced. 

The boundary condition at the surface (see app. 8) may be written as 

_ . . -  - n*(VS - 3 = 0 

d -.) 

where is a vector normal to the surface of the airplane. ‘The velocities Vs and 3 are the 
velocities of fluid particles and efastic particles of the airplane at the surface. They are 
measured relative to the stability axis system that rotates and translates with the airplanc 



The stability axi: system moves relative to the fluid axis system with the translationai 
t as f RFs. Thus, the two nuid 

-.) 

velocity V_p = V s +  W G  and rotational velocity z= 
velocities V and vs at the surface of the airplane are related as 

where c i s  the position vector of a point on the surface relative to the center of gravity, the 
origin of the stability axis system. 

Using equation (1  30), the boundary condition at the airplane surface becomes 

d d . . a -  

~.[U~+UO'S-(Qz, - R y s ) i s  - ( V + R x s  -pzs)j,  - (u+pys-QxJkS-a]=O .I (131) 

-. ._~ 

where it is important to note that some quantities are described in the fluid axis system 
wide others are described in the stability axis system. Also, each of the velotity 
components appearing in equation (131) is treated as an independent variable in the 
equations of motion, Sec. 5. Further, the perturbation velocity 7 9  must be of order of 
magnitude zero. Thus, each individual term invo!ving a velocity component when divided by 
U must be of order of magnitude dew for a valid appru..:imation baszd on small 
Srturbation, inviscid flow theory. The approxination in the small perturb tion equations 
of motio,i becomes linked to those in the flow theory through this boundary condition. 

In the reference motion of the airpldne, which.is steady, the boundary con-" I-. 
reduces to 

a - Q1 xsl ks +al] 

In the disturbl:d motion, the airplane may bc so orient .d relative to t x d  s2ace that 
the Euler angles are p-rturbed as J , ,  8 , 9 from those of the reference rr,otion. These 
variables are treated as independent, so that their perturbations are independent of the 
velocity perturbations, The flow problem must be reorien,d with the -,irplane. The only 
change io the boundary condition resiilting from the orientation perturbation arises from 
the elastic deformation perturbation due to the perturbation of the gravity forces. Thus, 
there is a change in the direct.: . i  of the normal vectorrrelative to the stability axis system, 
but there is no other change. 
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Neglecting products of perturbation quantities anG using the reft -:net. motion 
boundary condition, the perturbed boundary condition is found to be 

- 

The velocity potential 8 is the perturbation to the perturbation velocity potential in the 
reference motion such that 9 = 91 + 9p. The vector 6zl is the cliange in the vector 
normal to the surface caused by the change in elastic shape of the airplane from reference to 
disturbed lotion. To a first-order approximation, it is given by the elastic rotation at the 
surface 0 E  as 

v 

- 
6ii =e' X E 1  1 E  (134) 

& 

and 6 3 ~  is due to the peiturbed gravitational, inertial, and aerodynamic forces. I t  must be 
found from the ir' tal equilibrium equations of Sec. 5, as must the perturbed elastic 

F displacement rate, L 
- -  

The velocit-y composent U l * e 9  is the perturbation to the flow from its frestream 
direction that i s  zequired to satisfy the slope boundary condition at the airplane's surface. in 
general, the rerturbed flow may be unsteady, but the angle between the 3rection of the 
streamlines of the undisturbed flo,v and the streak lines of the disturbed t iuN is defined by 
tan 9 = n=v@ at the airplane's surface. This is the local incidence angle at any instant of 
time and because it is small 

-- 

By definition of the reference motion, the incidence angle does not charige with time 
in the reference motion, so that 

is the angle between unperturbed and perturbed streamlines. The perturbation, local 
incidence angle 
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is in general 9 function of time. 

The local flow incidence angles must be related to aerodynamic pressure at the 
airplane's surface before the above results may be used to generate stability derivatives. 
Surface pressures are readily coniputed from the velocity potential using an appropriate 
small perturbation form of Bernoulli's equation as shown h app. B. Thus, the problem 
centers on finding perturbation velocity potentials which satisfy the flow equation and the 
boundary conditions. 

The most widely used means for finding perturbation velocity uses the linearity of the 
flow quat ion in its small perturbation form. Elementary solution; to the flow equation are 
obtained. These are perturbations to uniform flows produced by sources and doublets. Their 
distribution throughout the flow and their strengths are so adjusted that the uniform flow is 
perturbed into conformance with the airplane's shape and motion. I.he sotirces and doublets 
are located in the volume that is interior to the airplane and doublets are distributed in the 
wake. In lieu of the solid body, an interior flow is formed; the boundary between this 
interior flow and the exterior flow is made to conform to the airplane surface. Further, the 
circulation required by the Kutta condition is imposed and the wake is made to satisfy the 
vortex laws. 

Tine linearized flow equaticn is essential to this type of flow representation. The linear 
combination of the efiwts of the sources and doublets is only possible if the flow equation 
i a linear partial differzntial equation. 

In practice, the flow boundary condition cannot, in general, be satisfied at every point 
of the airplane's surfice. A fkite number of surface points are chosen as control points, and 
the boundary condition is satisfied at those points to within some cliosen numerical 
accuracy. At points in between, the boundary condition may or may not be satisfied. 
However, when the number of control points is large and the surface is a smooth 
aerodynamic surface, the approximation may be of high quality. 

Additional approximations may be introduced. These a:e associated with a lineariza- 
tion of the boundary conditions in a manner consistent with the linearization of the flow 
equation. As shown in app. B, fcx thin bodies such as wings and tail surfaces the thickness 
may be considered separately from the incidence. For slender bodies such as fuselages the 
axial component sf flow may be considered separately from the cross-flow component. 
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The thickness of thin bodies may be represented by a distribution of sources at a 
middle surface, and incidence is represented by distributed doublets. For the axial flow over 
slender bodies, line distributions of sources are placed on the fuselage axis. The effect of 
cross flow is met by line doublets along the fuselage axis. 

There are several schemes uF2d in distributing the sources and doublets. They may have 
specified distributions over small regions cal!ed panels. In this case their strengths may be 
constant or have s o m  specified variation Over the surface of the panel. The distributed 
doublets on the panels are vortex sheets. In the method by Woodward, designated as 
computer program TA-67A in this r e p d  (ref. 3 9 ,  the Kutta condition is satisfied along 
with the vortex laws on each panel (see app. B). This method does not require separate 
treatment of the wake. 

An alternate scheme for treating the vorticity distribution on thin bodies utilizes a 
vorticity distribution represented by a series of loading functions that vary over the entire 
middle surface. The coefficients of the series are adjusted so as to satisfy the flow boundary 
condition at a finite number of control points. This is a collocation inethod; numerous other 
methods have been used. Reference to the books by Ashley and Landahl (ref. 27) and Ward 
(ref. 30) will provide an introduction to many of the alternate approaches. 

The approach used by Woodward (ref. 35) works well with the method that includes 
the empirical corrections required by stability and control applications. It reIates a IocaIized 
cause to a localized effect so that localized empirical corrections may be introduced. 
Aerodynamic influence coefficients are generated and admit of the following aerodynamic 
equation 

where the elements FA. are the aerodynamic panel pressure forces. The elements $i are the 
incidence angles of the panels and $JT. are the panel incidences due to thickness. The 
matrices [A] and [AT] are matrices of the corresponding aerodynamic influence 
coefficients. 

1 

I 

Up to this point the discussion of the 2erodynamic prob!em has ignored the effects of 
unsteady flow; the result represented by equation (138) is valid only for steady or 
quasi-steady flow. As shown in app. B, however, a n  approach suggested in Miles’ monograph 
(ref. 28) may be used to include the effects of unsteady flow in a manner appropriate to the 
aerodynamics of stability and control. This approach leads to a direct extension of equation 
(138) when the time dependence of the flow incidence angles is slowly varying. As shown in 
app. B, the time variation must be such that its reduced frequency is in the region of 
reduced frequencies of order o f  magnitude zero. This is a good approximation for 
consideration of the stability characteristics of large, flexible airplanes even though it is not 
satisfactory (or flutter problems. 
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The cvnsequence of mechanizing this approach following the method by Woodward 
will lead to an aerodynamic equation of the form 

The elements of [ bA]  will relate the panel pressure forces to the rates of panel incidence 
change. 

By evaluating the boundary condition given by equations (133) throuyh (1 36) at the 
aerodynamic control points and substituting it into equation (1 39), a complete formulation 
of the aerodynamic problem of stability and control is obtained. In the reference motion 
case, time dependence drops from consideration, and the pressure force due to thickness 
enters the problem only through the elastic deformations. However, an additional 
consideration is necessary in the case of disturbed motion. This involves the coordinate axis 
systems used to describe the problem. 

The aerodynamic equation, equation (138) or (139), is derived in terms of the fluid 
axis system. It may be recalled that the freestream velocity, U, and the Mach number, M, are 
perturbed. The fluid axis system in the reference motion differs from that in the disturbed 
motion. The aerodynamic equation is perturbed, and this may be expressed by writing 
equation (139) as 

r 

By discarding prodiicts of perturbation quantities and using the form of equation (139) for 
the teference motion, it follows that 



This exprcsses the perturbation to the aerodynamic forces in terms of the perturbation 
motion variables. The first-order approximation, lj z 2ql u/U1, has been used. Also, it 
may be rloted that the first term contains products of perturbation quantities since the 
reference motion incidence angles must be of perturbation order. The justification of this is 
somewhat loose. It falls on ihe requirements of stability and control. The u perturbation 
variable must be treatzd independently of the other variables. The f i s t  term, which contains 
u solely, must be considered separately in the order of magnitude consideration. 

P 

This last consideration points up a problem that requires a great deal of further 
investigation. Equation (141) has been written nearly a priori, but the basis of the equation 
is far from self evident. A very careful and fundamental order-of-magnitude ana!ysis is 
required in order to obtain a consistent, valid formulation of the influence coefficients in 
the equation. This is illustrated by the development of the results, which appear in app. B. A 
derivation of equation (141) is carried out for a thin body undergoing longitudinal 
perturbations. The basis for a sourc' extension of that analysis to thin wing, slender body 
combinations undergoing longitudhal disturbances also appears to exist (refs. 29 and 35). 
Howe*Jer, the lateral-directional problem for wing-body combinations has not bee? 
developed. An intuitive approach to developing a computer program for solving this 
lateral-directional problem might be instituted. However, without an order-of-magnitude 
analysis there would be no way to assess the limitations of such a program. A failure of the 
program to accurately predict lateral-directional derivatives might defy further intuitive 
judgment and a large engineering effort might be aeedlessly lost in numerical 
experimentation. 

In the preceding equations, (133) through (141), elastic deformations must be 
expressed in terms of the free vibration mode shapes. The perturbation to the elastic 
displacement vector is given by 

- {d,} = Ml{u } 
P 

where the generaked perturbation displacements u 
displacement rate dp in equation (133), therefore, can be written in matrix form as 

cre functions of time alone. The Pi 

- e  The triple scalar product (8E ;; n1 ) *is may be written as 
P 
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where 3~~ and 0~~ are the components gf elastic rotation about the zs and ys axes, 
respectively. Two ad itional modal matrices are introduced such that 

These represent the elastic slope deflections required for equation (144), but it must be 
noted thai the free vibration mode shapes do not describe the elastic deformation 
completely when the mode shapes are generated in the manner described in app. A. The 
elastic deflections arising from perturbation changes to the orientation of the gravity force 
and rigid-body inertial forces must be introduced separately. This is described in the 
discussion leading to equation (6.86b) in app. A as well as in the disucssion given in par. 
6.3.4 of app. A. 

Denote the elastic rotations arising from inertial relief and gravity pertiirbation forces 
as 

The elastic rotations may be found from specialized forms of the flexibility matrix denoted 
by [e$] and [c,]. Then, in accordance with equation (6.165) of app. A 

Further, letting the matrices of the components of the normal vectorsxli be defined as 

the expression for the perturbed flow incidences, equation (143), may be written in niatris 
form as 



as in Sec. 5 .  

The perturbation aerodynamic equation, equation (141), may be written in an 
abbreviated form by letting 
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where the effects of time rates of change of {#‘E } and {6’Ep)have been conpidcred 
negkjble. The aerodynamic matrices introduced in the equations may now be recognized as 

P 

(1Sla) 

(151b) 

(151d) 

Hence, with these definitions equation ( 150) becomes identical to equation (1 26)  of Sec. 6, 
i.e., 

7.3 Semi-Empirical Methods 

The semi-empirical or “handbook” methods have evolved from numerous wind tunnel 
tests and theoretical analyses of various aircraft configurations to evaluate the effects of 
geometry on the stability derivatives. These techniques, as do both the purely experiniental 
and purely theoretical techniques, seek to solve t4e exact flow equations of ref. 33. In 
addition, the handbook techniqim seek to improve the theoretical solutions based on 
inviscid fluid dynamic results by including experimentally measured forces and niomen ts 
due to leading edge suction, boundary layer, and other nonlinear effects not included in thc 
inviscid approximation of the aerodynamics. The inviscid flow theory is then modified with 
the experi,.iental results and plotted as functions of aerodynamic and geometric parameters 



(ref. 6). An engineer interested in calculating stability derivatives for a particul;tr 
Configuration must seek the appropriate tables and select the separate effects due to )king, 
h d y ,  tail, canard, etc. Appropriate interference factors betwczn wing-body, ving-tail. Ctc. ,  

a x  also piesented in the tables to account for the noniinearfiy of the flow field. Apper1di.u 
indicates which of the stability derivatives can be calculated using the USAF Stab;lity and 
Control Handbook. 

The procedure used to calculate the stability derivatives by the handbook tccliniquc i b  

k s t  illustrated by an example. Consider the calculation of CL * 

a' S' 

e 

WING-BODY TERM 

e 

(153) 

. -- 
HORIZONTAL TAIL TERM 

where (CLa)' is the lift curve slope for the wing of appropriate aspect ratio, 
taper ratio, section profile (camber, thickness), twist distribution. 
etc. 

IC$ is the ratio of aircraft nose lift to aircraft wing lift. 

is the effect of lift carryover on the wing due to the body. 

is the effect of lift carryover on the body due to the wing. 

KW;Bi 

K ~ ( w )  

( C d "  is the lift curve slope of a tail with the appropriate geometric 
parame tkrs. 

K ( ~ ( B )  is the effect of lift carryover $ -  the tail due to the body. 

K ~ ( w )  , is the effect of lift carryover on the body due to the tali. 

- a€ 
aa 

is the change in downwash on the tail due to the change in 
angle of attack of the airplane. 

q', 
q* pressure. 

is the ratio of dynamic pressure at the tail to freestream dynamic - 

- S' 
Se " 

is the ratio of wing area to the "effective area" of the tail. 

- Se" 
S 

is the ratio of effective tail area to the actual tail area. 



Equation (1 53) represents summed knowledge based on the personal experience of the 
authors of the handbook. It should be emphasized that the approximation of C L ~  in the 
equation is not unique because of the ‘‘eypericnce factor”’iinvo1ved. Therefore, there is no 
guarantee that the approximation is correct for all configurations. The handbook technique 
is the only semi-empirical technique available at this t h e  that can be used to  estimate 
nonlinear effects in the viscous fluid dynamic equations, Accuracy by this technique is only 
a function of the ingenuity, insight, and experience d the engineer performing the analysis. 

One other disadvantage of the handbook technique is that it can only be used to 
evaluate th . rigid and equivalent elastic mathematical models of an elastic aircraft. It cannot 
be used on the completely elastic and residual elastic models because there is no known way 
to develop consistent structural derivatives dependent only upon external geometry 
parameters. 

B. 
Handbook data for a study SST configuration and the 707-320B are presented in app. 

7.4 Experimental Methods 

The two principal experimental methods used to extract the stability derivatives are: 
(1) wind tunriel tests of a scaled model of the proposed aircraft and (2) flight tests of a 
similar aircraft or the actual aircraft. Both of the experimental methods are potentially more 
accurate than either the theoretical or semi-empirical methods, but neither offers a useful 
and convenient way of optimizing a configuration for good stability and control 
characteristics. 

The main disadvamage of both experimental methQds is the high cost of each test 
point and the difficulty of correcting the collected data for errors due to experimental 
procedure. In addition, the only derivatives generated by a flight test technique are for 
.completely elastic airplanes, and the extraction 3f rigid airplane values for comparison with 
the results of other methods is difficult, if not impossible. 

7.4.1 Wind tunnel tests,-- Wind tunnel tests .are a reliable wa.y of measuring rigid 
aircraft static stability derivatives. In addition, several experimental techniques to measure 
the & , q, and p dynamic stability derivatives are currently under development. 

Recently, a new technique of generating the static stability derivatives for an 
equivalent elastic aircraft was developed and is outlined in app. B. A semi-elastic model is 
built with structurally and aerodynamically scaled wings and tail. Force and moment data, if 
properly adjustea for scale effects and tunnel wall effects, can then be reduced to give the 
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equivalent elastic stability derivatives. These derivatives are then used in the dynamic 
equations describing the airplane’s motion through space. Inertial effects must t.e included 
in the analysis to account for load factor changes. 

I 

In some cases the equivalent elastic stability derivatives can be calculated from rigid 
wind tunnel data. In this method the lifting surface computer program is used to analyze the 
rigid and elastic aircraft First, rigid lift cuwe slopes are calculated; then, using the 
appropriate structural influence coefficients, the elastic lift curve slopes are calculated. The 
ratio of C L ~ E / C L * R  = LE/LR is formed and applied to all subsequent rigid wind tunnel 
,?-.La tu calculate the effect ol‘ elasticity. For some configurations, such as the SST of this 
study, the effect of elasticity on rigid wind tunnel values can be estimated by an elastic 
increment (see par. 7.5). 

&vera1 difficulties arise in the use of wind tunnel data. Because the model parameters 
used to evaluate stability derivatives have not yet been outlined, the engineer must 
determine the correct trip-strip size and locatbn for each stability derivative to duplicate 
the proper nonlinear viscous effects. The effects of Reynolds number and “rigid model 
elasticity” are usually unknown. Also, some wind tunnel t s t s  may be plagued with high 
tunnel turbulence or other forms of wind-tuni;el-induced effects in the desired force and 
moment data. 

Data for a stud‘y SST configuration and the 707-320B are presented in app. B. 

7.4.2 -- Flight test techniques.- The evaluation of stability derivatives from flight test 
data should, by definition, give the most accurate elastic airplane values. The engineer can 
use such data in much the same way thal he uses the handbook technique, provided 
individual component contributions to each stability derivative are known or can be 
extracted from the data measured in flight testing, 

‘Re primcr:. problem associated with stability derivative evaluation from flight test 
dali is the diffict.dty of performing inane:ivers holding all motion variables, except one, 
equal to zero. Obviously, even if it were possible to fly only at an angle-of-attack variation, 
the aircraft would elastically deform at some frequency determined by the structural 
proper~es, and the force and moment data measured at the center of gravity would contain 
both a! and structural motion (dp) contributions, 

In  addition, there are a limited number of maneuvers available from which to exttilct 
the stability derivatives. The usual methods for the longitudinal stability derivatives are 

i control column steps and pulses, windup turns, and thrust steps and pulses. Lateral 
derivatives may be extracted from maneuvers arising from steady sideslip and from wheel 
and rudder-pedal steps and pdses. The resulting forces and moments measured a t  the 
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aircraft center of gravity by accelerometers rr.tect cot only aercdynamic effects bit+ also the 
effects of the pilo~’s trnnsfer function (labj, response time, imensitivity to smJl but 
measurable error) . J ~  trim, etc.) and the control system e!asticity (cable stretch, internal 
friction, and nonlinear effects due to the wear of h,t.draufic systems and control SLirface 
linkages). Thus, the stability derivatives extracted from such flight test data also reflect 
these errors. 

Data foi the 707-320B are presented in app. B. 

7.5 Cornparism of Methods 

Figures 6 through 17 present comparisons of the theoretic ‘ ,emi-empirical, and 
stability derivatives. The experimental evaluations of C L ~ ,  I ’  

experimentally cietL.;mined values (wind tunnel and flight test) are to be talcen as the basis 
for comparing accuracy. A comparison of the estimates c f all stability derivatives listed in 
table 3 is contained in app. B. Discussion of the approximation5 used in the estimates also 
appears in app. B. 

Cmq, Cmu, and C ep 

The stabiliiy derivative evaluations presented here wel.e chosen because a complete 
comparison of theoretical and semi-empirical methods csuj.! be made against both wind 
tunnel and flight test data. As shown by tables 6, 7, and 8, estimates are not possible fc. 
both techniquzs for a!! stability derivatives of interest. Further, testing techniques do not 
exist or have not been used to evaluate all of these stability derivatives for the 707-320B and 
the SST configuration. Thus, a basis for comparison does not exist for all of the desired 
calculations. 

Wind tunne! evaluation of CL, and C, from both rigid and elastic wind tunnel 
models is shown in figs. 16 and 1‘7. These data ar2 shown in comparison with estimates 
obtained 2om lit’ting surface theory. Tlle results are fiinctionb qf both dynamic pressure and 
Mach number, as noted on ihe figures. Conseque;ltly, the interconnecting lines between 
values for the elastic xliodel are for visual purposes only; nterpolation for intermediate 
values is not possible. 

(x 

Prirriary inipc tance has been placed on the cniculatfon of the static and quasi-steady 
longitudinal derivatives, since for t t zse  derivatives all three kchniques are applicable. Four 
of the six pri .my longitudir.:! 2arivatives are presented in figs. 6 through 13 to compare the 
techniques. For both the 707 ar.1 SST, the lifting suriace values of C L ~ R  (figs. 6 and 7) are 
closer than the hzndbook values to the wir.- -unnel values. The vdue of Cm, ;; for the “2’: 
(fig. 8) calculated by lifting surface theory is closer to the wind hmiel value than arc. V Z ! ~ :  i 

calculatbd by eilher lifting line or handbi. x techniques. In the case c C the SST, C n l , , ~  ir 
also calcdated more accurately by the liftiny surface technique than by the hanuhook 
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technique. No experimental data were available to evaluate the accuracy of Cm R (figs. 10 
and 11) for the 707 and SST. The value of CmuR (figs. 12 and 13) calculated by lifting 
surface theory compares very well with wind funnel daia.for both the 707 and SST; the 
handbook technique will not handle tEs derivative. 

9 

b 

The only significant lateral-directional derivative listed in table 3 that can be calculated 
by both lifting surface and handbook techniques is C&. Figures 14 and 15 show the 
comparison for Clpn; unfortunately no rigid experimental values were available. 

The comparison of the techniques used to calculate elastic stability derivatives is 
hampered by an inconsistent set of data. Of the five primary derivatives shown in figs. 6 
through 15, C.&E for the 707 (fig 14) provides the best test of accuracy. Both the 
handbook and lifting surface techniques give the same value of CkE at 3050 meters 
altitude, but at 10 675 meters the lifting surface technique is more accurate. For this reason, 
and because lifting surface theory is more accurate for rigid derivatives, it is concluded that 
the remaining equivalent elastic derivatives will also be calculated more accurately by the 
lifting surface technique than by the handbook technique. 

As additional justification, figs. 16 and 17 show that the incremental error between 
wind tunnel and lifting surface values of CL, and Cm does not increase appreciably 
between the rigid and the equivalent elastic cases. In fact, figs. 16 and 17 indicate that an 
empirical correction to the rigid wind tunnel data may result in a more accurate elastic value 
of the stability derivative. For the study SST at 72" sweep, these corrections are of the form 

cy 
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s.9 METHODS FOR CALCULATING STABILITY 
.AND RESPONSE CHARACTERISTICS 

8.1 General Considerations 

The determination of static stability and control characteristics may be considered as 
an intermediate step in the solution of the total problem of dynamic stability and control. 
Taking this intermediate step has a number of advantages. 

1. Steady-state trim, balancing, and control information are provided. 
2. Comparison with static stability criteria can be made. 
3.Through examining the static picture it is possible to predict some dynamic 

Ghguacteristics. 

However, the analyst is limited in trying to predict the dynamic motion from static 

1. Static lon@tudinal stability is, in general, a prercquisite for dynamic longitudinal 
$#ability. m e r e  are, however, instances where static stability is not required for 
dynamic stability. 

2. Static stabiity is usually, but not necessarily, xequired for good handling qualities. 
3. Structural dynamic motions cannot be investisated. Static stability analyses are only 

stability considemtions for the following reasons. 

eoncemed with the rigid and equivalent elastic airplanes. 

Static stability characteristics are found by an analysis of the stability derivatives (using 
calculation methods discussed in Sec. 7), and by r;olvhg for the neutral point, maneuver 
point, etc. through fairly elementary expressions co?daining the stability derivatives. 

Dynamic stability characteristics are generally determined by analyzing the roots of the 
characteristic equation when the perturbations of khe airplane motion from the steady state 
are small. Approximate formitlas €or the frequency and damping of the motion are at times 
applicable for small perturbation motion. When nonlinear effects are significant, time 
history solutions of the arbitrary or large. pertuxlation equations are used to study the 
stability characteris tics. 

The three airplane models treated in this study, viz., rigid, equivalent elastic, and 
completely elastic airplanes, were derived from consideration of the degree of airplane 
flexibility. The completely elastic airplane has been analyzed with various elastic degrees of 
freedom, and the effects of residual flexibility have been studied, The various structural 
mathematical models have been reviewed in Sec. 5. Static and dynamic stability character- 
istic, were determined by using stability de ,iv;ltives from several sources: handbook 
formulas, aerodynamic lifting surface theory, ancc tdnd tunnel data. 



General results obtained from the static and dynamic analyses are presented in tables 9 
and 10. Table 9 summarizes the accuracies obtained from lifting surface theory and hand- 
book techniques in predicting the rigid airplane static stability and control Characteristics 
when compared with wind tunnel predictions. A limited amount of substantiation with 
flight test data was obtained. Also stiown in table 9 is the relative effect of elasticity on the 
various static characteristics. Although most of the substantiation of methods was for the 
rigid airplane, one could expect to obtain similar accuracies for the equivalent elastic air- 
plane. A method based upon ratioing the elastic and rigid stability derivatives that can be 
expected to improve the prediction of static stability characteristics is discussed in par. 8.2. 
The poor accuracy obtained for some configurations and characteristics is almost entirely 
due to poor prediction of the stability derivative C, Appendix B discusses the cdcula+%n 
of th is  derivative and the expected improvements to the lifting surface theory mechanha- 

mor' tion program to improve the prediction of C 

tu- 

- 
Table 20 presents the same general results for the dynamic characteristics of the 

airplane studied.-In addition, general results on the usefulness of approximate formulas for 
predict&- frequency and damping are summarized, and the number of elastic modes needed 
for an accurate dynamic elastic analysis is given. Appendix C should be consulted for details 
of the derivatives that were used in an individual method and for a complete discussion of 
all the dynamic stability results. A limited discassion appears in par. 8.3.5 for some of the 
more important results. 

8.2 Static Stability Characteristics 

The static stability characteristics df an airplane are strongly dependent on the indi- 
vidual stability derivatives and o n  how the stability derivatives combine. The effects of the 
individual stability derivatives can be judged by comparing their signs with the static stabil- 
ity criteria, as discussed in Sec. 6, and by noting the magnitude of the derivative. The sign of 
the derivative simply indicates whether the airplane is stable, unstable, or neutrally stable 
with respect to a certaui motion variable (requirements for stable motion are sumtnarized in 
table 11). The magnitude of the derivative gives an indication. of the degree of stability or 
instability. 

The derivatives in combination can also be used to evaluate airplane stability character- 

1. Elevator and stabilizer trim angles; 
2. Stick-speed stability; 
3. Elevator and stabilizer angles per g; 
4. Neutral point; 
5. Maneuver point. 

Expressions used for calculating the above quantities are given hi equations (154) 

istics. The static stability and control characteristics usually investigated are: 

through ( 16 1 ), 
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TABLE 9.- STATIC STABILITY CALCULATIONS-GENERAL RESULTS 

r Relative accuracy of calculation methoda I Relative 
[Computer lifting surface, I USAF ’ 1 effectof 

Stability and 
control 

Stability and 
control 

I1 

bE1’ iH1 G c P  

dbE/dV G Gd P 
dbE/dtl G Gd P 

h* G c P  

hm G c P  - 

: elastic handbook elas ticity b 

Super Sub 1 Super Sub !Super 

elastic handbook elas ticity b 

Super Sub 1 Super Sub !Super 
~~ 

SST 707 SST SST 
Rigid Rigid Rigid Rigid 707 SST SST 

~~ 

SST 707 SST SST 
Rigid Rigid Rigid Rigid 707 SST SST 

a. Reflects almost entirely ability to calculate derivative Cma and resulting effect on 
characteristic. 
G (good)-method compares favorably with wind tunnel predictions (exception allowed.) 
F (fair)-less favorable correlation with predictions. 
P (poor)-method does not compare favorablywith predictions. 

b. L (large)-elasticity considered a significant effect. 
M (moderate)--elasticity considered moderately important; not quite as significant as 
differences due to stability derivative calculation methods. 
S (small)-elastici ty considered a minor change to stability characteristic; changes due 
to stability derivative calculation methods usually much more important. 

c. No data available. 

d. Correlation with flight test, but based on a very limited amount of data. 
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TABLE 11.- STATICSTABILITY CRITERIA 

c 
Observation e 

(Section 6) 

Ct <o  
C D p  P 

ys 9 

c >o 'mu '0 

c c o  Cm < O  

c > o  c <o 
La! "r 

"P 
c < o  c < o  

mol ' P  

Calculation 

d6 IdV > O  
E1 

Stick-speed stability 
(Section 6) 

Elevator angle per g ddEjdnlV .e 0 
c1 

Neutral point 
(p. 78, ref. 4) 

Maneuver point 
(p. 59, ref. 4) 

Aft of aft c.g. limit 

Aft of aft c.g. limit 
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8.2.1 Elevator and stabiiizer trim arig1es.-For rigid and equivalent elastic airplanes, the 
horizontal stabilizer angle to trim is given by 

Similarly, the elvator angle to trim is given by 

8.2.2 Stick-speed -- stability.-The elastic airplane stick-speed stability for stabilizertrim 
is given by the following expression: 

ac 
La, 

-=- 0 + c m  - 
aq 0 La, a9 C d(iH) 1 

dV C C - C  C 
miH La H ma, Li 

14.d 



For the rigid airplane all variations with dynamic pressure vanish, Le., aCm0/aq = 
aCb/aq = 0, etc. Therefore, for the rigid airplane equation (1 56) becomes 

b 

d6E1 -- 

1 -= 

a! dV Cm CL. - C  cL “i H ‘H 

< O  (159) 

- c  LO 1 
C 
L1 

‘m QI 

ac 
(157) 

0 
8C 

LO 

H + C L a T  0 
- C m  

cy 

As shown in table 11 , a stable gradient of longitudinal control displacement versus 
speed is defined as one for which diH/dVI n=sl >O. Stick-speed stability is usually referred to 
as a handling-qualities parameter. The equations for elevator speed stability are, of course, 
identical with equations ( I  56) and 157), except that b~ replaces iH in all terms. 

8.2.3 Elevator angle per g.--An expression for elevator angle per g in a normal pullup 
can be written as 

c c + q c  c - cmncL)  
- = -  d6 E “cy L1 2 v  mq q.- 
dn - c  c - c  c 

ma L6E 
(158) @ 

8.2.4 Neutral point.-The neutral point is calculated from the expression 
A 
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where h is the center-of-gravity position. The requirement on the neutral point is that it 
should be aft of the aft center-of-gravity limit. Equation (160) is good only for small angles 
of attack in the linear range. b 

- 1_1 

1. Computer, using lifting surface theory 
(aerodynamic influence coefficient 
method) 

2. Handbook 

3. Handbook combined with computer 

4. Wind tunnel 

5 .  Flight test 

lifting surface theory -- 

1. 

8.2.5 Maneuver point.-An expression to calculate the maneuver point is 

Equivalent 
Rigid Elastic 
Airplane Airplane 

Yes Yes 

-. - - 
Yes nc; - 
no Yes I 

I I Y .  , 
Yes Yes 

(limited) 

(limited) 
no Yes 

The effect of the derivatives CL on the maneuver point is negligible, as it was for the 
4 elevator-angle-per-g characteristic. The requirement on the maneuver point is that it should 

be aft of the aft center-of-gravity limit. 

Complete derivations of the above equations for the static stability characteristics can 
be found in app. C. 

Five methods were used in t? study tu determine the longitudinal derivatives. 

Elaetic stability characteristics were determined using equivalent elastic stability deriva- 
tives of the Formulation I1 type (app. B). These derivatives were generated by methods 1. 
and 3. above. 
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Some flight test data were available to correlate theoretical predictions of longitudinal 
static stability. T!ie data .were obtained as part of the certification requirements for longi- 
tudinal stability and control for the model 707-320B airplane; Results for both maneuvering 
stability, dbg/dn and stick-speed stability, dbE/dV, were obtained from these tests. The 
elevator-angle-per-g information was reduced from windup turn maneuvers. 

Figure 18 illustrates some typical static margin results for the 707-320B and the 
42" -wing-sweep SST configuration. Variations in the results due to both stability derintive 
calculation technique and elasticity can be noted. Appendix C contains detailed results for 
all characteristics in graphic form. 

Lifting surface theory (aerodynamic influence coefficient method) was found from the 
static stability analysis to give better predictions than handbook methads for some cases 
(fig. 18 m d  table 9). I t  gives direct, acceptable results for some stability characteristics for 
equivalent elastic and rigid airplanes. However, if wind tunnel data are available 9 more 
accurate way of -predicting elastic effects would be to compute an elastic-to-rigid ratio or 
increment referenced to the wind tunnel value. This WES substantiated in Sec. 7. For 
example, 

8.3 An Analysis of Dynamic Stability by 
Ct.;racteristic Equation Rooting 

8 ~ 0 d s . -  Airplane equations of motion 
can be reduced to a set of linear, second-order differential equations with constant coeffi- 
cients when dynamic behavior can be approximated by assuming that nution perturbations 
relative to the steady state are small (see Sec. 5 ) .  These equations :ire called small perturba- 
tion equations of motion and are amenable to generating characteristic equations whose 
roots can be examined to determine motion characteristics. 

The dynamic stability criteria for all characteristic equgtion roots are given in par. 
6.2.1. These criteria can be satisfied by inspection, Le., by checking the sign of the real parts 
of the roots or their absence. However, these yeslno-type answers relate very little informa- 
tion about airplane motion characteristics. Some of the parameters that can be deducea 
from the roots and are more physically oriented are discussed in par. 8.3.2. 
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8.3.2 Rigid and equivalent elastic airplanes.- The small perturbation longitudinal and 
lateral-directional equations of motion are given as equations (17) and (18). It  is possible to 
take the Laplace transformation of the equations of motioi! and solve for the roots of the 
resulting characteristic equations. However, the program that generated the roots and asso- 
ciated data in this study used a different technique, which will now be described briefly. 

P =  Po e 

Ths lateral-direct ional charoc teris tic equation, with the indicated rigidlequivalen t 
elastic definitions, evolves from equations (1 7) and (I  8) as indicated in the equation in table 

, 12. This eqiiaticn is a result of the requirement that (for SA = bR= 0) the equation 
.- - . -  - -. .. . 

6s (D)l {XI = (0) (162a) 

has nontrivial solutions, Le., 

mode 

(162b) . - 

A A ht/t* 

The longitudinal characteristic equation in determinant form evolves as indicated in the 
equation in table 13. Inertia relief is handled implicitly as indicated in table 13 (called 
Formulation I1 in app. B). The effects due to cannot be treated explicitly and are handled 
as summarized in table 13. 

The expanded form of the characteristic equations of tables 12 and 13 for the small 
perturbation equations of motion written in the parameter A is 

where the coefficients A through E are determined by the case (longitudinal or lateral- 
directional). Equation (1 63) is obtained by assuming the solutions 

m a t e  
6 = 0 * e  At/t* I 

or 

and substituting these into the equations in the form of equation (1 62a). After carrying out 
the differentiation, eAtlt" pin be eliminated, leaving 
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TABLE 12.- LATERAL-DIRECTIONAL CHARACTEXISTIC EQUATIONIN DETERMhVMT FORM 

where: p =  M/pS,I; M = W/g; 1= b/2 
D = t* d/dt; t*= I l V  

c1 

Note: For the equivalent elastic 

- are not accounted for. 

airplane, Cyi,, Cy;, , Cp** and CnyI 
.. - 71' 

Rigidairplane @ 

All derivatives are conventional 
rigid derivatives. 

W = Actual Gross Weight - W 1 

Equivalent plastic airplane 8. @ 

Derivatives include elastic effects due 
to aerodynamic loading (Formulation I) 
and would have E subscripts. 

Assumptions required: 
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D1 and2,D5,b7,D11,G1-6,GlO,Sl a n d 2 , S 5 a n d R 1 = @ ~  = P 1 = 0  



TABLE 13. - LONGITUDINAL CHARACTERISTIC EQUATIONIIV DETERMINANT FORM 

where: P = M/pS,I; M =W/g; Q =E/2 

D=t* d/dt; t*=P/VcI 

Note: For the equivalent elastic 
airplane, C u I  and all hi 
are not accounted for. 

Equivalent elastic airplane 
@ &  @ 

- __ 

Rigid airplane 

All derivatives are convention21 
rigid derivatives. 

iB = 1yy/Pswf3 

W =Actual airplane weight 

IUI 

Assumptions required: 

D1-2,5,7,8, lI,G1-6, lO,S1-2,5andR1=91=Pi ~ C T  +Cml=O 
ml 

.~ ~~ 

Derivatives include elastic effects 
due to both aerodynamic and 
inertial loading (Formulation XI) 
and would have E subscripts. 
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where [A(h)] is identical with [A(D)] for h = D. Tire solu6ons hilt*, i = 1, 2, 3, 4 of the 
fourth-order polynominal equation ( 163) are the “roots of the Characteristic equation.” 
Since a rather complete discussion of the coefficients A through E and the occurrence and 
significance of various combinations of real and complex roots may be found in refs. 4 and 
36, it is not repeated here. 

The systems analysis analogies used for airplane characteristic equations lead to the 
conventional “mode” definitions which follow (in equation (163) let hilt* = S and divide by 
A). 

First, for lon$tudinal equations (for two complex pairs of roots): . - 

where: p -phugoid mode 

sp - short period mode 

0 (0 

the roots are 

“P “sp 

S1,2 =up f jw, 

s3,4 =kp * jwsp 

-tP(sP) wnp(sp) = uP(sP) is the real part of the 
phugoid (short period) 
root pair 

W fi- = is the imaginary part of 
the phugoid (short period) 
root pair 

“P(SP) 

tp(sp) is the phugoid (short period) damping ratio 

is the phugoid (short period) undamped 
natural frequency 

“P(SP) 
W 
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Second, for laterabdirectional equations (for one complex pair and two real roots): 

.I._ . .. _. .- 

where: D ~ D u t c h  roll mode 

r WroQling convergence root 

s -spiral root 

1 1  ->- 
Tr Ts 
therootsare S ~ , ~ = ' J D *  j6JD 

s3,4=-F-$ 1 1  =u3,04 

- SD UnD = CD is the real part of the Dutch 
roll root pair 

% D d X =  ~ J D  is the imaginary part of the 
Dutch roll root pair 

5, is the Dutch roll damping ratio 

is the Dutch roll undamped natural 
frequency 

O"D 

The relationship between the damping factor (g), undamped natural frequency (wn), 
damping (a) frequency, and damped frequency (w) is illustrated in the diagram below. 

1 1 
*Sometimes the term (S+-) is written ( S - - ) .  

TS T, 
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g = - cos 6 

Assume that there are two complex pairs of roots that result from the solution of the 
rigid or equivalent elastic longitudinal characteristic equation. The real-time solution for Q 

will ther :ve the form 

where Pland P2 are constants determined by initial conditions. 
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One pair of roots, the highest frequency pair, determines the short period mode. 
The damped frequency is given by 

asp- radians /second ’ 
The period is given by 

2n P =- - seconds /cycle 
sp %p 

Time to damp to half amplitude for usp <O is given by 

1 T = - In ($ -seconds 
1/2 osp 

For asp:- 0, time to double amplitude is given by 

1 T = - In (2) - seconds 
2 Osp 

Cycles to damp to half amplitude is given by 

Cl/2 =psp Tl/2 = wsPT1/2 2n - cycles 

Cycles to  double amplitude is given by 

c =-=- T2 wsPT2 - cycles psp 27r 
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These parameters apply also to the longitudinal phugoid mode, the lateral-directional 
Dutch roll mode and, in some cases, a lateral phugoid mode when the lateral-directional 
characteristic equation yields two pairs of complex roots. 

8.3.3 Completely elastic airplane.- For the completely elastic airplane a less restricted 
approach is required than that used for the rigid and equivalent elastic cases. This involves a 
mathematical model that will account for the structural dynamic motions of the airplane as 
well as the flight path and rotational motions. It is accomplished using a model with the 
option of including or excluding residual flexibility, thus giving a system with an arbitrary 
number of variables. The airplane has, then, the usual six degrees of freedom plus an 
arbitrary number of degrees of freedom that involves the structural dynamics. 

Subject to the type of problem to be solved and the degree of accuracy required, the 
engineer has a choice as to the number of variables (degrees of freedom) to include in any 
one analysis. This is a considerable departure from the philosophy of the well-defined, six 
rigid-body degrees of freedom associated with the rigid and equivalent elastic mathematical 
models previously discussed. 

The equations of motion that represent both rigid-body and internal motion have been 
developed as equation (95) in Sec. 5 and are repeated here 

[aI{q}+ [Bl {q}+ rCl{q}={O}  (173) 

Expressions for the coefficients [ a ]  and [B] have been presented in Sec. 5 for a residual- 
flexibility formulation and for the case where all elastic degrees of freedom participate 
dynamically. For the latter case, i.e., a completely elastic airplane, the coefficient [ a ]  
represents the generalized mass, [B] includes the aerodynamic damping, and [C] tt:,: gener- 
alized stiffness and generalized displacement dependent aerodynamic coefficients. 

Taking the Laplace transformation of equation (1 73) yields 

NOTE: From the definition of perturbation variables { q), 

{q (t = 0 ) ) = { 4  (t = o,}=(o} 

which will have nontrivial solutions {q) only if 
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I 

’ The characteristic equation ( I  75) then yields a determinant with clcments ads2 t BijS 
+- (23, When equation (175) is expanded, it yields a polynominal of degree 2n, where n is 
the order of the determinant. The roots of this polynominal are the roots of the character- 
istic equation (175). These roots are obtained using an eigmvalue approach. The theory is 
described in refs. 37 and 38. 

8.3.4 Approximate solutions.- Approximate solutions for rigid airplane frequency 
and damping characteristics have long been in existence. It is assumed that the appropriak 
solutions also apply to the equivalent elastic mathematical model becausr: of its similarity to 
the rigid model. 

An extensive discussion of approximate characteristics, transfer fii tictiom, etc., can be 
found in ref. 36. For a two-degree-of-freedom (cvand e), longitudinal short period mode 
approximation, the expressions for frequency and damping are: 

w q M q z w  -vcl 
SP 

n 

and 

q M;N + Zw + M 

fs, 2 0  
n,P 

where 

(177) 



i 

n 

Data in both refs. 4 and 36 show these to be accurate expressions for certain risid 
airplanes when compared with the exact quartic solution of equation (166) for lon, 4tudinal 

equations. These expressions h?ve been considered in the light of the study airplanes and the 
results summarized in table 10. Detailed results may be found in app. C. 

The longitudinal philgoid mode can also be approximated by two degrees of freedom, 
u and 8. Approximate frequency and damping expressions for the phugoid mode are: 

and 

where 
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A set of approximate expressions for the lateral-directiohal mo&s is given in ref. 36. 
The Dutch roll, rolling covergence, and spiral modes are given as 

- -  

- Yv - Lp - Nr - - 1 1  - - 
T~ Tr s, = 

. -  .. . -  - .  
.- - _. . 

(or a less complic?.?ed expression 
I .  __- -. - -. - - . .- 

which, together with equation (180), gives good results ki some cases) 

. 

(Np Lr - LP Nr 
-= 1 vcl 
Ts Yv Lp Nr + Lp N@ + 
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where 

The merits of using equations (180) and (182) are discussed in detail in app. C and 
summarized in table 10. The complexity of equations (1 83) and (1 84) makes their use 
almost ineffectual when compared with the use of the small perturbation program. These 
expressions for 1/Tr and l/Ts were not used in this study. 

Similarity between the rigid and equivalent elastic mathematical models implies that 
the use of the approximate expressions could also be used for equivalent elastic cases with 
some minor redefinitions of terms involved. 

Some studies have been made for the completely elastic airplane from the viewpoint of 
approximate transfer functions. In one study (ref. 39), some approximate frequency and 
damping expressions were obtained for rigid-body modes with one and two elastic modes 
for three dissimilar configurations. It is apparent from the study that the form and accuracy 
of approximate expressions are sensitive to configuration, number of dastic modes being 



considered, and dynamic pressure. The treatment of special problems for known significant 
isolated elastic effects appears to be in the approximation category. The availability, speed, 
and versatility of digital computer techniques tends to p;kclude the use of approximate 
expressions for solving general problems in elastic airplane dynamics. 

8.3.5 Discussion of results of the characteristic equation methods.- The most impor- 
tant conclusions arrived at from the longitudinal dynamic analyses were that the stability 
characteristics are more sensitive to aerodynamic derivative accuracy than to elastic effects 
for the study airplane cases. In addition, the effects of elasticity were relatively small; this is 
illustrated in fig. 19 for the 707-320B short period frequency and damping characteristics. 

Figure 20 shows that the addition of dynamically participating elastic modes to the 
SST configurations has much less effect on the short period frequency (2 x 2 versus 22 x 22 
modes) than does the staticelastic type of correction (3 x 3, rigid versus equivalent elastic), 
The effect of dynamic pressure is also illustrated in fig. 20 at M = 2.7. It appears that an 
increase in at-that condition has an overall stiffening effect, as observed by comparing the 
elastic increments between the comparable models. 

A particularly disiurbing quality of the data in fig. 20 is the lack of consistency in the 
effects of elasticity. For example, the truncated, completely elastic data show increases, 
decreases, and no changes in the frequency. In addition, the change between rigid and 
equivalent elastic frequency shows increases in frequency for 42" sweep and decreases at 
72' sweep. This precludes guessing or making any general statements as to the overall 
effects of elasticity. This is even more evident as illustrated in fig. 21 where the undamped 
natural frequency is presented for the SST. In each case shown, the effect of adding elastic 
degrees of freedom (generalized coordinates) is illustrated. 

In general, the frequency increased when the two lowest frequency elastic modes were 
added, then decreased when the next sets of two were added out tc  eight total modes. From 
there on adding modes had rather unpredictable effects, except that in all cases the fre- 
quency tended to approach a constant value as more modes were added beyond 12. The 
apparent inconsistency is that the constant value is not always less than or more than the 
rigid 2 x 2. 

The study also showed that adding many elastic degrees of freedom consistently de- 
creased the damping of the short period mode for the study airplanes. 

The adequacy of a particular mathematical model (structural or aerodynamic) for the 
longitudinal dynamics (table 10) would be an important consideration of a handling- 
qualities study. 
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For the study airplanes at the flight conditions anakzed, the elastic effects on the 
Dutch roll frequency are quite small. This is illustrated in fig. 22 where the undamped 
natural frequency and damping are shown for two 707-320B flight conditions for various 
numbers of elastic modes. The effects of residual flexibility are also shown. A static analysis 
predicts the period of this mode accurately enough for stability and control purposes. The 
damping of the Dutch roll mode decreases with the addition of the f i s t  few elastic modes, 
but then increases very slightly as more elastic degrees of freedom are added. A staticelastic 
analysis would appear to predict the damping with sufficient accuracy for this 
cogigurat ion. 

The various truncated, completely elastic airplane models gave good correlation with 
flight test data for the 707-320B for the Dutch ro!! mode. Figure 23 shows the correlation 
of the damping. Also shown are the poor results obtained from the equivalent elastic 
hndbook method. The method has certain deficiencies, which are discussed in apps. B and 
C, 

- For many cases the variations in dynamic characteristics for the rigid airplane due to 
the use of different methods for calculating the stability derivatives are as large as any elastic 
effects (for all modes). This points to the fact that a sophisticated, completely elastic 
airplane mathematical model is only as good as the basic rigid stability derivatives. (Table 10 
summarizes the effects of elasticity on the dynamics for all configurations.) Thercfore, a 
need exists for an accurate analytical approach to generating all stability derivatives in 
conjunction with lifting surface and lifting line aerodynamic theories. The longitudinal rate 
derivatives (Cm2 Cmq, CL , etc.) and all lateral-directional stability derivatives need to be 
mechanized. 9 

8.4 Dynamic Stability Characteristics 
by Time History Solutions 

8.4.1 Applicability of time history solutions.- There are today several practical cases 
where nonlinearities in the equations of motion (dynamic or aerodynamic) are large enough 
that they cannot be neglected. It has been commoti practice in such cases to base judgment 
of stability behavior on time history solutions of the equations of motion. A time history is 
a set of data that describes airplane motions as a function of real time, i.e., (X} = { X(t)}. 

Time histories have the advantage of providing a clear physical picture of the motion of 
the airplane. In addition, they have the merit of allowing a direst comparison of analytical 
with experimental data. 
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FIGURE 22.- 707-3208 DUTCH ROLL FREQUENCY AND DAMPING FOR 
COMPLETELY ELASTIC AIRPLANE 
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Time histories can be generated by integrating with respect to time the complete 
airplane equations of motion or, for that matter, any of the equations of motion shown in 
Sec. 5 .  The integration technique may vary, but the approath is generally the same for any 
type of computer. The equations must be trimmed (equilibrated) either separately from or 
in conjunction with the proSlem to be solved, i.e., the solutions {Xi)  of the algebraic 
steady-state equations must be obtained and used as initial conditions. The program is 
started with t = 0. At some time when to S 0, a disturbance, {AX}, is introduced and the 
response, { X(t)), calculated for to< t < t 1, where t 1 - to is usually a time interval sufficiently 
long to establish stability behavior but not so long as to involve mass or other changes that 
would significantly affect assumptions made in deriving the airplane equations of motion. 

In this fashion, it is possible to determine stability behavior by observation, i.e., by 
judging the behavior of the variables of the resulting time history. The stability criteria 
associated with time histories have been stated in Sec. 6. 

An important observation must be made. For nonlinear equations of motion (see app. 
A), several different cases involving disturbances different in both kind and magnitude must 
be run to obtain sufficient infxmation to establish the stability behavior. The reason for 
this must be found in the property of nonlinear differential equations, Le., that their 
response behavior can be a function of the initial disturbance. 

For the linearized, uncoupled, small perturbation equations of motion (app. A), only 
one arbitrary disturbance is required for each mode (longitudinal or lateral-directional). 
Linearity implies that the response behavior is independent of the size or type of disturb- 
ance in that mode. However, time history generation for the linear, small perturbation 
equations is not necessarily the most efficient approach to stability analysis. 

The major advantage of the time history (integration) approach is that it is in terms of 
real time. The analyst has more physical feel for the problem, since he observes motions 
similar to those which the airplane would experience in flight under the same conditions. 
Most of the disadvantages of the tirile history method are not geally pertinent to the 
problem of stability behavior. Instead, they are of an economic nature, involving such things 
as acquisition, unkeep, and availability of hardware and facilities; and man-hour expendi- 
tures in programming, data preparation, and reduction. 

8.4.2 Rigid and equivalent elastic airplanes.- The time history technique for rigid and 
equivalent elastic models is essentially that written for the rigid airplane. The mechanized 
solution will subsequently be referred to as the “rigid-body, six-degree-of-freedom pro- , 
gram,” even though it is also used for equivalent elastic solutions. The equations of motion 
solved by the program, as described in app. A, are the “equations of arbitrary motion.” 
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For this program these equations can be nonautonomous. Thrust forces and moments 
may be input as explicit functions of time. In addition, aerodynamic forces and momems 
due to'controls may be explicit functions of time. The aerodynamic data may be nonlinear 
and aerodynamic cross-coupling may be included, e.g., CD and C L ~ .  Certain negli- 
gible derivatives such as CD& and Cys have been neglected, 

C D y  mo' 
A 

A description of the particular integration scheme used to solve the equations of 
motion for this program may be found in app. C. 

The rigid-body , six-degree-of-freedom program is capable of analyzing handling- 
qualities problems. Part of the basic program output is the vel( .'ry (Up, Vp, Wp) and 
acceleration (cp, \ip, Wp) at the pilot's station. Also, because engine thrust may be input 
separately for each engine as an explicit function of time, the program has the capability to 
analyze engine-out-type time history solutions. 

8.4.3 Completely elastic airplane.- The time history solutions of the completely 
elastic airplane equations of motion for this study were obtained udng 'a special program- 
ming language called MIMIC. This special technique is documented in ref. 40. The time 
histories are merely the time-dependent analogs of the frequency-dependent equation (1 74) 
with initial equilibrium conditions to which the perturbations are added along with a dis- 
turbance to excite the system. The scheme is simple. From the equilibrium conditions and 
the disturbance, the accelerations are calculated, e.&, 

i =  1, 2, . . . , n 
these are integrated by making the statements 

and further by 

= I  N T qi, 4i (0) hi 0 
= hi (0) +j  qi dt 

=qi  (0) + hi dt s 

i=l, 2,. . . , n 

(187) 
i=l, 2,. . . , n 
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Included as a subroutine in the MIMIC program is a Runge-Kutta numerical integration 
technique that accomplished the integrations, equations (1 86) and (1 87). This approach is 
easy for the engineer since the programs are then physically .oriented. However, as one might 
expect, the easier the program is to write, for a given problbm, the more time is required to 
execute it. 

As was mentioned already, this solution is an analog of the frequency-dependent 
equation (174). Indeed, aside from errors inherent in the numerical integration technique, 
there should be no difference between the MIMIC solutions and those obtained from the 
explicit expression 

I 

wherez - l  indicates the inverse Laplace transformation. 

8.4.4 Discussion of time history solutions.- For the time histories generated for this 
report, the aerodynamic coefficients were of a linear nature only. Also, the lateral- 
directional and longitudinal modes were constrained to be uncoupled. The time history 
methods were used here to obtain a graphic presentation of the motion in response to 
various disturbances. The frequency and damping characteristics are &zntially those given 
by the characteristic equation method. 

An example of the use of the MIMIC program to generate longitudinal time histories is 
shown in fig. 24. The response of the 707-320B to an elevator pulse is shown for three 
mathematical models. The rigid model corresponds to the tmncated, completely elastic 
model resulting in the use of a 2 x 2 matrix. The inclusion of 14 dynamic modes in a 
staticelastic manner results in the greatest pitch amplitudes. If four modes are allowed to 
participate dynamically, the result is an effective increase in the damping as reflected in the 
decrease of amplitude. 

Appendix C presents r examples of the use of MIMIC and the six-degree-of- 
freedom program to gerierate .utle histories. 
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9.0 SOLUTION OF THE COMPLETE PROBLEM 
b 

9.1 Arrangcient of a Computation System 

Previous discussions have dealt with individual parts of the overall problen; of deter- 
mining the stability characteristics of an elastic airplane. The pertinent methods can now be 
arranged to form a general calculation procedure. Certain preparatcry calculaticns and 
inputs must also be included as part of the procedure. 

To handle elastic airplane problems completely and i n  sufficient detail for most appli- 
cations, computer mechanization of the methods is necessary. On this basis, a flow diagram 
of recommended computer program system is given in fig. 25. This system is now under 
development. - 

The airplane definition section computes the characteristics of an airplane in terms of 
aerodynamic and structural influence coefficients, free vibration normal modes, and inertias. 
This section will not accept empirical data as input. The airplane stability evaluation section 
evaluates the stability characteristics of the airplane, using the results from the airplane 
definition section either al01.3 or in conjunction with empirical data which would apply 
corrections to or replace the computed results from the airplane definition section. 

The airplane definition section consists of four computer programs identified as: geom- 
etry defmition (GD), aerodynamic influence coefficients (AIC), structural influence coeffi- 
cients (SIC), and normal modes (NM). The airplane stability evaluation section consists of 
three computer programs identified as: stability derivatives and static stability (SD&SS), 
characteristic equation rooting [CER), and time histories (TH). Specifications and com- 
ments 01 each of the program elements are given in following sections. Element specifica- 
tions were arrived at after careful consideration of the detailed results and developments 
contained in the appendixes as well as of information in this document. 

9,2 Use of the System 

The system as presented above could be operated in a number of ways to suit the 
particular needs of the user. It has the capability of accepting very detailed inputs as well as 
empirical and test data to obtain very accurate answers. It can also be used in a less complex 
manner to find preliminary-design-type data. The major use classifications can be stated as: 

1. Preliminary design; 
2. Configuration development; 
3. End ;-roduct development 



Input: Mach no. 

AIC Output: Symmetric and/or SIC 
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FIGURE 25.- COMPUTING PROGRAM SYSTEM-FLOW DIAGRAM 



9.2.1 Preliminary design use.- ' h i s  category is one for which only relatively rough 
input data are usually available. Structural characteristics p d  mass distribution are very 
approximate, and no wind tunnel or other aerodynamic test data are available. Under these 
circumstances, coarser airplane paneling would ordinarily be used than for configuration or 
end product development. It would also be usual to concentrate on finding stability deriva- 
tives and static stability characteristics from the SD&SS program. Use would not ordinarily 
be made of the NM and TH parts of the system nor, possibly, of the CER program. 

Therefore, by using the GD, AIC, SIC, SD&SS, and CER elements, preliminary-design- 
type answers could be obtained on the elastic effects. Comparison of the computed elastic 
and rigid stability derivatives and static stability would provide a good f i s t  look at the role 
th-t flexibility plays for a particular configuration. It should be remembered, however, that 
the specific rigid and elastic values may be in considerable error, although better than 
obtainable in the past, even when the elastic-to-rigid ratios or increments are adequate. 

Use of the system in this manner allows relatively easy calculation of effects due to 
configuration changes, loading, flight regime changes, etc., for both the rigid and the elastic 
airplane. 

9.2.2 Configuration development use.- For this use, input data for the system are 
more accurate and complete than for preliminary design. By this time, detailed structural 
analyses have generally been accomplished, weights determined, and wind tunnel tests run 
on the basic configuration. Usually aerodynamic force data are available, but not pressure 
distribution data. 

The GD element is now used to  give a more accurate description of the airplane. 
Denser paneling is specified. Details such as dihedral and detailed geometry are included. 
The AIC program, using the better description, can now calculate more accurate aero- 
dynamic data. Items such as nacelle and wing-body-tail interference, which may have been 
neglected in the preliminary design studies, are now included. 

In the SIC element the early matrix obtained with an approximate beam analysis is 
replaced with a more exact beam analysis or with an externally developed matrix. If the 
externally developed matrix is based on different paneling than the AIC's, an interpolation 
routine in the SIC program changes the matrix to be consistent with the aerodynamic 
paneling. 

It may be elected at this point to include the structural dynamic effect on the stability 
characteristics. This is initiated by exercising the NM program to provide data for inputing 
programs in the airplane evaluation section of the system. 
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In the stability evaluation section, the user has the opportunity to supplement or 
replace previously calculated data with .est, handbook, or ecnpirical data. A modest amount 
of adjustment is normally desirable for cases where viscous effects and nonlinearities are 
small. The adjustment would usually take the form of applying calculated elastic-to-rigid 
ratios to wind-tunnel-obtained stability derivatives. For example, 

b 

Elastic 
ma! 

ma! 

- 
-C C 'C 

Rigid 
ma! 

W.T.  

Where viscous effects and/or nonlinearities are important, more extensive adjustment -. - should be made. 

The SD&SS program then calculates the derivatives and static stability using the 
previously calculated data plus desired empirical inputs. 

To obtain the dynamic stability characteristics, one chooses either the CER or TH 
program. The CER program is faster but is more restricted, since it is based on the linear, 
small perturbation equations. The TH program would be required for cases where large 
perturbations describe the motion. It can also be used for the small perturbation case, but 
would not give any more information than could be obtained from the CER program. 

The structural dynamic effects can be included in either program by inputing the NM 
program results. Comparisons of rigid, equivalent elastic, -.id completely elastic airplane 
representations are then possible. 

9.2.3 End moduct deve1oPment.- The methods for this area of use are an extension 
of those of the previous section. More and more test data would be fed into the system so 
that ultimately the system might be considered as a vehicle for calculating perturbations to 
the test information. In particular, pressure distribution data, local separations, complete 
surface stall, viscous wake effects, and other effects would be empirically included. The 
extent of this type of investigation is usually limited by the time and experience of the user. 
The main value of this approach is to investigate problem areas that may come to light late 
in the development of a configuration or in flight test. 



9.3 System Element Descriptions 

t 
9.3.1 Geometry definition (GD).- This program accepts as input the basic geometric 

description of the airplane’s surface either in its cruise condition or in its unloaded condi- 
tion (jig shape). In addition, the program accepts an aerodynamic paneling density selection. 
Constraints placed on the paneling selection reflect, primarily, the requirements of the 
aerodynamic representation. The program will have the option of letting the program select 
the paneling based on a selected density or of operating with a user-selected paneling. The 
number of aerodynamic panels will be open-ended. 

The program will compute thickness, incidence, and dihedral slope at each panel con- 
trol point and panel centroid, and body surface paneling required for wing-body-tail inter- 
ference flow on a cylinder of mean body radius. It will also compute the coordinates of the 
corners, centroids, and control points of the aerodynamic panels as well as tkek areas. 

9.3.2 Aerodynamic influence coefficients (AIC).- The surface of the airplane is 
divided into panels in the geometry definition (GD) program. The function of the AIC 
program is to compute the change in the pressure force coefficient at each surface panel due 
to a unit change in inclination to the flow at each panel. The AIC’s will include the effects 
of a slender body, thin wing, and tail as well as wing-body-tail interference. The approach is 
essentially that of ref. 35. The computation is Mach number dependent and will handle 
subsonic and supersonic flows up to Mach 5.  Transonic flow in the range of about Mach 0.9 
to 1.2 is not handled rigorously, so calculations should not be made in the regime. Methods 
are satisfactory for altitudes up to 30 000 meters (about 100 000 ft). 

The AIC’s for changes in surface panel inclinations to the flow which are symmetric 
with respect to the airplane’s plane of symmetry are computed separately from those which 
are nonsymmetric. The method of ref. 35 consists of representing the perturbation of a 
uniform irrotational flow (due to the presence of the airplane) by line singularities (at inner 
surfaces of the wing and tail). 

Body thickness, camber, and incidence are represented by line sources and line 
doublets on the body axis. The wing and tail surface thickness slopes are represented by 
surface distributions of sources with linearly varying strengths. The effects of wing and tail 
surface incidence and camber, as well as body interference on the wing and tail surfaces, are 
represented by vorticity distributions. 

Unsteady aerodynamic effects can be accounted for in a manner consistent with the 
requirements of airplane stability evaluation. The method suggested by Miles (ref. 28) for 
reduced frequencies that are less than unity will be used to reduce the aerodynamics of 
unsteady flow to one of steady tlow. 



An aerodynamic influence coefficient theory for nonsymme trical flow past wing- 
body-tail combinations has not previously been developed. This development is now being 
carried out. The techniques involved in the development ind theoretical justification are 
outlined by Van Dyke (ref. 41), Ashley and Landahl (ref. 27),and Chester (ref. 29). 

9.3.3 Structural influence coefficients (SIC),- This program computes the elements of 
four flexibility matrices that have the following properties: 

Matrix (1) gives the displacement of each panel control point due to a unit load at 
each panel centroid. 
Matrix (2) gives the displacement of each panel centroid due to a unit load at each 
panel centroid. 
Matrix (3) gives the rotation about the y body axis (z body axis for vertical tail and 
body) at each panel control poiqt due to a unit load at each panel centroid. 
Matrix (4) gives the rotation about the x body axis due to a unit load at each panel 
centroid. 
All computed flexibility matrices are such that a self- equilibrating system of loads 
applied at panel centroids does not give rise to a displacement of the airplane’s 
center of gravity or a rigid-body rotation of the airplane about its center of gravity. 

The program will also compute the location of the airplane’s center of gravity and the 
components of its inertia in the body axis system. 

The program accepts as input: 
0 Distribution of mass based on paneling computed in GD program. 
0 Distribution of bending and torsional rigidities along an elastic axis system. 
0 Geometric description of the elastic axis system. 

0 Elements of a flexibility or a stiffness matrix computed exterior to this system using 
or 

an arbitrary selection of structural modes. 

If elastic axis data are input to the program, the flexibility matrices are computed from 
beam theory for an arbitrary number of beams. The flexibility matrices are computed by an 
interpolation method if a flexibility or a stiffness matrix is input to the program. The 
program is such that an arbitrary number of mass distributions may be combined using 
multiplying factors. 

9.3.4 Structural normal modes (NM).- This program is essentially an eigenvalue pro- 
gram. The free vibration of the structure is given by the eigenvalue problem 
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, The eignevalues, on, are the natural frequencies. The iigenvectors, {QJ, when normal- 
ized, are the free vibration normal mode shapes. They give the deflected shapes of the 
airplane at the resonant natural frequencies, w,. Slope nonnal mode shapes can be calcu- 
lated from the deflection shapes. These results are conibined into three mode shape 
matrices. One relates elastic deflections at the panel control points to generalized coordi- 
nates (elastic degrees of treedom), another relates angle-of-incidence changes at  the panel 
control point to  elastic degrees of freedom, and the final one relates dihedral changes at the 
panel control points to elastic degrees of freedom. 

9.3.5 Stability derivative and static stability (SD&SS).- This program accepts the 
following as input from the airplane definition action: paneling geometry, normal mode 
shapes, reference flight condition attitude ( 8 4 ,  9 I), M L  :h numb’er, dynamic pressure and 
load factor, flexibility matrices, aerodynamic influence coefficients, mass distribution, and 
control surface-deflection angles. It will compute all significant Ftsbility derivatives based on 
aerodynamic influence coefficients; as well as control surface trim andes for the reference 
flight condition, airplane shape in reference flight condition, stick-speed stability, elevator 
angles per g, neutral point, and maneuver point. 

The matrix equations for the stability derivatives formulated for residual flexibility are 
fundamental to this program. These were presented and discussed in Sec. 7. Recall that the 
matrices [A1 1, [A2 1, [A3], [Aq], and [As] appearing in the equations of motion intro- 
duced the aerodynamic forces. These matrices, when premultiplied by the matrices [ 51 
[BI] ’~  or [91]T [BI ] ’~ ,  result in the airplane stability derivatives for the residual- 
flexibility formulation. If the mairk PK 1 .I in the equation of motion is replaced by a 
matrix whose elements are al€ zero, the stability derivatives reduce to the equivalent elastic 
stability derivatives. These are derived in app. B from the flow boundary condition at the 
airplane’s surface. If, in addition, the flexibility matrix [e] is set equal to a zero matrix, 
then the stability derivatives are the rigid airplane stability derivatives. Thus, the stability 
derivatives in the form contained in equation (47) are the most genera1 that may be chosen, 
since rigid and equivalent elastic derivatives may be readily obtained from them. 

Inclusion of a corrector matrix technique in the SD&SS program based on the analysis 
presented in app. B is recommended. That technique utilizes a diagonal corrector matrix 
that corrects the aerodynamic influence coefficient matrix using wind tunnel pressure model 
data. A correction is made at each test condition, e.g., angles of incidence ( c u , ~ )  and Mach 
number. The SD&SS program will accept pressure model data as input. The pressure data 
cannot be constrained to correspond to the aerodynamic panel centroirl 4ection as they are 
in the GD program. Therefore, the user is required to select those aerodynamic panel 
centroids which are to be corrected by each pressure data point. The SD&SS program 
partitions the aerodynamic influence coefficient matrix in accordance with the user’s 
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selection and performs the corrections on the basis of the partitioned matrix. The program 
will compute the stability derivatives and static stability results for each test condition for 
which pressure data is input. The results are then tabulated in a form acceptable as input to 
the TH program. 

The program will also accept as input stability derivative data obtained from wind 
tunnel and flight testing in tabular form. At the selection of the user, th's data would be 
used in combination with corrected or uncorrected aerodynamic and structural influence 
coefficients to obtain stability derivatives that are corrected for elastic effects. 

The corrections that can be computed are as follows: 
LE/LR = ratio of lift, elastic to rigid 
DE/DR = ratio of drag, elastic to rigid 
YE/YR = ratio of side force, elastic to rigid 
ME/MR = ratic. of pitching moment, elastic to rigid 
RE/RR = ratio of rolling moment, elastic to rigid 
W / N R  = ratio of yawing moment, elastic to rigid 
Aac = change in aerodynamic center, elastic from rigid 

The program will be such that these elastic-to-rigid corrections can be computea for 
complete configurations to correct rigid stability derivatives and control derivatives obtained 
exterior to the program. The program can also compute the elastic-to-rigid corrections for 
contributions due to the components of a complete configuration, Le., wing, body, and tail. 

. 9.3.6 Characteristic Equation Rooting (CER).- This program operates only on the 
basis of the small perturbation equations of motion. The stability derivatives will, therefore, 
be constants and the equations of motion will be linear, ordinary differential equations with 
constant coefficients. 

The program will accept as input the coefficients of the motion variables appearing in 
the equations of motion. It will combine the coefficients in the appropriate form for the 
rooting method. The method should be programmed in open-ended form so as to accept as 
many degrees of freedom as desired. 

The program computes: 
0 times and number of cycles to damp to half and to one-tenth amplitude, 

frequency and period of modes, 
0 undamped natural frequency of modes, 
0 'damping ratios of modes, 

phase and amplitude of model coupling terms, e.g., argument, and 
0 (9/p) and magnitude (g/p). 
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9.3.7 Time Histories (TH).- This program integrates the large perturbation equations 
of motion of the airplane by a variable, step-size Runge-Kutta method. The computed 
,notion variables are as follows: 

The program will be such that the stability derivatives are input as constants or as 
variables. When the stability derivatives are variables, their values as functions of the motion 
variables, will be input from tables and interpolated or extrapolated linearly. The interpola- 
tion method can handle three independent variables; where more than three are requked, 
superposition will be used to obtain the value of the stability derivative. 

t 

The forcesmd moments from engine thrust will include the effect of engine location 
and attitude. Inertial effects from rotating engine parts can also be included. 

The mass and components of inertia are constant. The airplane will be considered to  be 
flying over a flat, nonrotating earth. 

17 9 
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10. CONCLUSlONS AND RECOMMENDAflON!2 

b 

The conclusions and recommendations listed below have been formulated following an 
examination of the results of work reported both in this dccument and in the appendixes. 

1. In general, reliable pr :dictions of elastic airplane longitudinal stability and control 
characteristics can be made using current state-of-the-art theoretical methods. These 
methods are applicable and practical for preliminary design purposes. 

2. The general equations of motion, along with either the large perturbation or small 
perturbation equations of motion, were found to be suitable for determining refer- 
ence motion and stability characteristics of an airplane when it is disturbed from the 
reference motion. The small perturbaticn equations are applicable to nearly linear 
systems. The large perturbation equations are necessary in examining nonlinear 
systems and large uisturbances from the reference motion. 

3. The mathematical formulation of stability criter- is the same for rigid, equivalent 
elastic, and completely elastic airplanes. 

4. Static stability is usually, but not always, a prerequisite for dynamic stability and 
good handling qualities. 

5. Energy decay methods and Lyapunov stability theory have potential stability cri- 
teria application. However, more research is needed to establish their practical 
application. 

6. Handbook methods in some cases give low-quality results for estimation of rigid air- 
plane stability derivatives. In addition, taken alone they cannot adequately predict 
elastic effects. 

7. The aerodynamic influence coefficient method using lifting surface theory gives 
generally acceptable results for estimation of rigid and equivalent elastic longitudinal 
derivatives. The method is applicable to lateral-directional problems but has not 
been mechanized as yet; this should be done. 

This method, when arranged for accepting some empirical and test data, was 
judged to be the best available approach for predicting airplane stability derivatives. 
Incorporation of leading edge suction, more accurate shed vortex field representa- 
tion, and other improvements are possible and should be developed where greater 
accuracy is desired than would be obtained with the basic method. 

8. If wind tunnel data are available, the method of (7) above can be used to provide 
more accurate predictions of equivalent elastic effects. This is done by computing an 
elastic-to-rigid ratio or increment, which is then applied to the wind tunnel value. 
For example, 

- C - 
Eq. El .  ma 

C 

C 
Elastic 

Rigid 
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'.,us apprcach is recommended as a practical and reasonably accurate way to obtain 
' equivalent elastic effects. 
,9 .  The remarks in (6), (7), and (8) above also apply 20 prediction of airplane static 

stability. 
10. Both static and dynamic stability characteristics were found to be sensitive to 

inaccuracies in estimating the rigid stability derivatives. This uncertainty is usually as 
large as the elastic effects. 

11. Dynamic flexibility effects were usually found to be modest and smaller than the 
equivalent elastic effects. About 20 elastic modes are required to obtain good re- 
sults; using less than this number can lead to  significant error if residual flexibility is 
not used. 

12. For many cases the equivalent elastic formulation represents the airplane accurately 
enough so that there is no need to go to the extra complication of the completely 
elastic formulation. Engineering judgment is required to decide on this for dynamic 
stability evaluation of any particular confi,wration, however. 

13. Approximate formulas for determining damping of longitudiml dynamics were satis- 
factory provided C,, is dominant. However, these methods are unreliable for gen- 
eral use and should be avoided. 

' 14. Characteristic equation rooting and -time history methods are adequate and are 
recommende for use in dewmining both longitudinal and lateral-directional 
dynamic stability characteristics. 

- - . ..- . - . . 

.. - 
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